MathDB
Annulus

Source:

January 6, 2009
geometryPythagorean Theorem

Problem Statement

An annulus is the region between two concentric circles. The concentric circles in the figure have radii b b and c c, with b>c b > c. Let OX \overline{OX} be a radius of the larger circle, let XZ \overline{XZ} be tangent to the smaller circle at Z Z, and let OY \overline{OY} be the radius of the larger circle that contains Z Z. Let a \equal{} XZ, d \equal{} YZ, and e \equal{} XY. What is the area of the annulus? <spanclass=latexbold>(A)</span> πa2<spanclass=latexbold>(B)</span> πb2<spanclass=latexbold>(C)</span> πc2<spanclass=latexbold>(D)</span> πd2<spanclass=latexbold>(E)</span> πe2 <span class='latex-bold'>(A)</span>\ \pi a^2 \qquad <span class='latex-bold'>(B)</span>\ \pi b^2 \qquad <span class='latex-bold'>(C)</span>\ \pi c^2 \qquad <span class='latex-bold'>(D)</span>\ \pi d^2 \qquad <span class='latex-bold'>(E)</span>\ \pi e^2 [asy]unitsize(1.4cm); defaultpen(linewidth(.8pt)); dotfactor=3;
real r1=1.0, r2=1.8; pair O=(0,0), Z=r1*dir(90), Y=r2*dir(90); pair X=intersectionpoints(Z--(Z.x+100,Z.y), Circle(O,r2))[0]; pair[] points={X,O,Y,Z};
filldraw(Circle(O,r2),mediumgray,black); filldraw(Circle(O,r1),white,black);
dot(points); draw(X--Y--O--cycle--Z);
label("OO",O,SSW,fontsize(10pt)); label("ZZ",Z,SW,fontsize(10pt)); label("YY",Y,N,fontsize(10pt)); label("XX",X,NE,fontsize(10pt));
defaultpen(fontsize(8pt));
label("cc",midpoint(O--Z),W); label("dd",midpoint(Z--Y),W); label("ee",midpoint(X--Y),NE); label("aa",midpoint(X--Z),N); label("bb",midpoint(O--X),SE);[/asy]