MathDB
Find the set of distinct real numbers

Source: 2019 Jozsef Wildt International Math Competition-W. 5

5/18/2020
Let n1n \geq 1. Find a set of distincts real numbers (xj)1jn\left(x_j\right)_{1\leq j\leq n} such that for any bijections f:{1,2,,n}2{1,2,,n}2f : \{1, 2,\cdots ,n\}^2 \to \{1, 2,\cdots ,n\}^2 the matrix (xf(i,j))1i,jn\left(x_{f(i,j)}\right)_{1\leq i,j\leq n} is invertible.
matrix
Prove this inequality on logarithms

Source: 2019 Jozsef Wildt International Math Competition-W. 4

5/18/2020
If x,y,z,t>1x, y, z, t > 1 then: (logzxtx)2+(logxyty)2+(logxyzz)2+(logyztt)2>14\left(\log _{zxt}x\right)^2+\left(\log _{xyt}y\right)^2+\left(\log _{xyz}z\right)^2+\left(\log _{yzt}t\right)^2>\frac{1}{4}
inequalitieslogarithms
Solve this integration from Jozsef competition 2019

Source: 2019 Jozsef Wildt International Math Competition-W. 3

5/18/2020
Compute π4π4cosx+1x2(1+xsinx)1x2dx\int \limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\frac{\cos x+1-x^2}{(1+x\sin x)\sqrt{1-x^2}}dx
integrationtrigonometrycalculus
Find the value of this integration

Source: 2019 Jozsef Wildt International Math Competition-W. 6

5/18/2020
Computeπ6π4(1+lnx)cosx+xsinxlnxcos2x+x2ln2xdx\int \limits_{\frac{\pi}{6}}^{\frac{\pi}{4}}\frac{(1+\ln x)\cos x+x\sin x\ln x}{\cos^2 x + x^2 \ln^2 x}dx
integrationtrigonometrylogarithmscalculus
Find the value of this limit

Source: 2019 Jozsef Wildt International Math Competition-W. 7

5/18/2020
If Ωn=k=1n(1k1k(2x10+3x8+1)cos1(kx)dx)\Omega_n=\sum \limits_{k=1}^n \left(\int \limits_{-\frac{1}{k}}^{\frac{1}{k}}(2x^{10} + 3x^8 + 1)\cos^{-1}(kx)dx\right)Then find Ω=limn(ΩnπHn)\Omega=\lim \limits_{n\to \infty}\left(\Omega_n-\pi H_n\right)
limitintegrationSummationSequencesHarmonic Numbers
Find the limit

Source: 2019 Jozsef Wildt International Math Competition-W. 8

5/18/2020
Let (an)n1(a_n)_{n\geq 1} be a positive real sequence given by an=k=1n1ka_n=\sum \limits_{k=1}^n \frac{1}{k}. Compute limne2ank=1n(k!2k+(k+1)!2(k+1))2\lim \limits_{n \to \infty}e^{-2a_n} \sum \limits_{k=1}^n \left \lfloor \left(\sqrt[2k]{k!}+\sqrt[2(k+1)]{(k+1)!}\right)^2 \right \rfloorwhere we denote by x\lfloor x\rfloor the integer part of xx.
limitSummationHarmonic NumbersSequencesgreatest integer funtion
Find the limit of this saequence

Source: 2019 Jozsef Wildt International Math Competition-W. 9

5/18/2020
Let α>0\alpha > 0 be a real number. Compute the limit of the sequence {xn}n1\{x_n\}_{n\geq 1} defined by xn={k=1nsinh(kn2),when n>1α0,when n1αx_n=\begin{cases} \sum \limits_{k=1}^n \sinh \left(\frac{k}{n^2}\right),& \text{when}\ n>\frac{1}{\alpha}\\ 0,& \text{when}\ n\leq \frac{1}{\alpha}\end{cases}
limitSequences
Prove this identity on integration

Source: 2019 Jozsef Wildt International Math Competition-W. 10

5/18/2020
If si(x)=x(sintt)dt;x>0{si}(x) =- \int \limits_{x}^{\infty}\left(\frac{\sin t}{t}\right)dt; x>0 then ee2(1x(si(e4x)si(e3x)))dx=3e4(1x(si(e2x)si(ex)))dx\int \limits_{e}^{e^2} \left(\frac{1}{x}\left(si\left(e^4x\right)-si\left(e^3x\right)\right)\right)\,dx=\int \limits_{3}^{e^4} \left(\frac{1}{x}\left(\operatorname{si}\left(e^2x\right)-si\left(ex\right)\right)\right)dx
integrationtrigonometryExponentscalculus
Find the limit of the expression made by 3 sequences

Source: 2019 Jozsef Wildt International Math Competition-W. 11

5/18/2020
Let (sn)n1(s_n)_{n\geq 1} be a sequence given by sn=2n+k=1n1ks_n=-2\sqrt{n}+\sum \limits_{k=1}^n\frac{1}{\sqrt{k}} with limnsn=s=\lim \limits_{n \to \infty}s_n=s=Ioachimescu constant and (an)n1(a_n)_{n\geq 1} , (bn)n1(b_n)_{n\geq 1} be a positive real sequences such that limnan+1nan=aR+,limnbn+1bnn=bR+\lim \limits_{n\to \infty}\frac{a_{n+1}}{na_n}=a\in \mathbb{R}^*_+, \lim \limits_{n\to \infty}\frac{b_{n+1}}{b_n\sqrt{n}}=b\in \mathbb{R}^*_+Computelimn(1+esnesn+1)anbnn\lim \limits_{n\to \infty}\left(1+e^{s_n}-e^{s_{n+1}}\right)^{\sqrt[n]{a_nb_n}}
Sequenceslimit
Prove this integral inequality

Source: 2019 Jozsef Wildt International Math Competition-W. 12

5/18/2020
If 0<a<b0 < a < b then: aa+b2(tan1t)dtab(tan1t)dt<12\frac{\int \limits^{\frac{a+b}{2}}_{a}\left(\tan^{-1}t\right)dt}{\int \limits_{a}^{b}\left(\tan^{-1}t\right)dt}<\frac{1}{2}
integrationinequalitiescalculus
Find the cube root of this polynomial

Source: 2019 Jozsef Wildt International Math Competition-W. 13

5/18/2020
Let aa, bb and cc be complex numbers such that abc=1abc = 1. Find the value of the cubic root of
\begin{tabular}{|ccc|} b+n3cb + n^3c & n(cb)n(c - b) & n2(bc)n^2(b - c)\\ n2(ca)n^2(c - a) & c+n3ac + n^3a & n(ac)n(a - c)\\ n(ba)n(b - a) & n2(ab)n^2(a - b) & a+n3ba + n^3b \end{tabular}
determinantpolynomialcomplex numbersalgebra
Find if the number is irrational

Source: 2019 Jozsef Wildt International Math Competition-W. 15

5/18/2020
It is possible to partition the set {100,101,,1000}\{100, 101,\cdots , 1000\} into two subsets so that for any two distinct elements xx and yy belonging to the same subset x+y3 \sqrt[3]{x + y} is irrational?
number theory
Prove this inequality on trigonometric function tan inverse

Source: 2019 Jozsef Wildt International Math Competition-W. 14

5/18/2020
If aa, bb, c>0c > 0; ab+bc+ca=3ab + bc + ca = 3 then: 4(tan12)(tan1(abc3))πtan1(1+abc3)4\left(\tan^{-1} 2\right)\left(\tan^{-1}\left(\sqrt[3]{abc}\right)\right) \leq \pi \tan^{-1}\left(1 + \sqrt[3]{abc}\right)
trigonometryinequalitiesfunction
Prove this integral trigonometric inequality

Source: 2019 Jozsef Wildt International Math Competition-W. 16

5/18/2020
If f:[a,b](0,)f : [a, b] \to (0,\infty); 0<ab0 < a \leq b; ff derivable; ff' continuous then:abf(x)f(x)f3(x)+1tan1(f(b)f(a)1+f(a)f(b))\int \limits_{a}^{b}\frac{f'(x)\sqrt{f(x)}}{f^3(x) + 1}\leq \tan^{-1}\left(\frac{f(b)-f(a)}{1 + f(a)f(b)}\right)
integrationtrigonometryinequalitiescalculus
Find the limit

Source: 2019 Jozsef Wildt International Math Competition-W. 35

5/19/2020
Calculatelimnn!(1+1n)n2+nnn+12\lim \limits_{n \to \infty}\frac{n!\left(1+\frac{1}{n}\right)^{n^2+n}}{n^{n+\frac{1}{2}}}
limit
Prove these properties on Fibonacci and Lucas Sequences

Source: 2019 Jozsef Wildt International Math Competition-W. 19

5/18/2020
Let {Fn}nZ\{F_n\}_{n\in\mathbb{Z}} and {Ln}nZ\{L_n\}_{n\in\mathbb{Z}} denote the Fibonacci and Lucas numbers, respectively, given by Fn+1=Fn+Fn1 and Ln+1=Ln+Ln1 for all n1F_{n+1} = F_n + F_{n-1}\ \text{and}\ L_{n+1} = L_n + L_{n-1}\ \text{for all}\ n \geq 1with F0=0F_0 = 0, F1=1F_1 = 1, L0=2L_0 = 2, and L1=1L_1 = 1. Prove that for integers n1n \geq 1 and j0j \geq 0
[*]k=1nFk±jLkj=F2n+11+{0,if n is even(1)±jF±2j,if n is odd\sum \limits_{k=1}^n F_{k\pm j}L_{k\mp j}=F_{2n+1}-1+\begin{cases} 0, & \text{if}\ n\ \text{is even}\\ \left(-1\right)^{\pm j}F_{\pm 2j}, & \text{if}\ n\ \text{is odd} \end{cases} [*] k=1nFk+jFkjLk+jLkj=F4n+21nL4j5\sum \limits_{k=1}^nF_{k+j}F_{k-j}L_{k+j}L_{k-j}=\frac{F_{4n+2}-1-nL_{4j}}{5}
number theoryFibonacci sequenceLucas sequence
Draw the two graphs and find their relation

Source: 2019 Jozsef Wildt International Math Competition-W. 20

5/18/2020
[*] Let GG be a (4,4)(4, 4) unoriented graph, 2-regulate, containing a cycle with the length 3. Find the characteristic polynomial PG(λ)P_G (\lambda) , its spectrum Spec(G)Spec (G) and draw the graph GG. [*] Let GG' be another 2-regulate graph, having its characteristic polynomial PG(λ)=λ44λ2+α,αRP_{G'} (\lambda) = \lambda^4 - 4\lambda^2 + \alpha, \alpha \in \mathbb{R}. Find the spectrum Spec(G)Spec(G') and draw the graph GG'. [*] Are the graphs GG and GG' cospectral or isomorphic?
polynomialgraphgraph theory
Prove the value of the limit is 0

Source: 2019 Jozsef Wildt International Math Competition-W. 18

5/18/2020
Let {ck}k1\{c_k\}_{k\geq1} be a sequence with 0ck10 \leq c_k \leq 1, c10c_1 \neq 0, α>1\alpha > 1. Let Cn=c1++cnC_n = c_1 + \cdots + c_n. Prove limnC1α++Cnα(C1++Cn)α=0\lim \limits_{n \to \infty}\frac{C_1^{\alpha}+\cdots+C_n^{\alpha}}{\left(C_1+\cdots +C_n\right)^{\alpha}}=0
limitSequences
Find the limit in terms of A and B

Source: 2019 Jozsef Wildt International Math Competition-W. 21

5/18/2020
Let ff be a continuously differentiable function on [0,1][0, 1] and mNm \in \mathbb{N}. Let A=f(1)A = f(1) and let B=01x1mf(x)dxB=\int \limits_{0}^1 x^{-\frac{1}{m}}f(x)dx. Calculate limnn(01f(x)dxk=1n(kmnm(k1)mnm)f((k1)mnm))\lim \limits_{n \to \infty} n\left(\int \limits_{0}^1 f(x)dx-\sum \limits_{k=1}^n \left(\frac{k^m}{n^m}-\frac{(k-1)^m}{n^m}\right)f\left(\frac{(k-1)^m}{n^m}\right)\right)in terms of AA and BB.
integrationlimit
Find if A/B is irrational

Source: 2019 Jozsef Wildt International Math Competition-W. 22

5/18/2020
Let AA and BB the series: A=n=1C2n1C2n0+C2n1++C2n2n, B=n=1Γ(n+12)Γ(n+52)A=\sum \limits_{n=1}^{\infty}\frac{C_{2n}^1}{C_{2n}^0+C_{2n}^1+\cdots +C_{2n}^{2n}},\ B=\sum \limits_{n=1}^{\infty}\frac{\Gamma \left(n+\frac{1}{2}\right) }{\Gamma \left(n+\frac{5}{2}\right)}Study if AB\frac{A}{B} is irrational number.
Gamma functionnumber theory
Proove this inequality

Source: 2019 Jozsef Wildt International Math Competition-W. 24

5/18/2020
If aa, bb, c>0c > 0, prove thatab+c+bc+a+ca+ba+ba+b+2c+b+c2a+b+c+c+aa+2b+c\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{a+b}{a+b+2c}+\frac{b+c}{2a+b+c}+\frac{c+a}{a+2b+c}
inequalities
Proof this inequality on triangle

Source: 2019 Jozsef Wildt International Math Competition-W. 23

5/18/2020
If bb, cc are the legs, and aa is the hypotenuse of a right triangle, prove that(a+b+c)(1a+1b+1c)5+32\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 5+3\sqrt{2}
inequalitiesTriangle
Prove this inequality on gamma function

Source: 2019 Jozsef Wildt International Math Competition-W. 25

5/18/2020
Let xix_i, yiy_i, ziz_i, wiR+,i=1,2,nw_i \in \mathbb{R}^+, i = 1, 2,\cdots n, such thati=1nxi=nx, i=1nyi=ny, i=1nwi=nw\sum \limits_{i=1}^nx_i=nx,\ \sum \limits_{i=1}^ny_i=ny,\ \sum \limits_{i=1}^nw_i=nw Γ(zi)Γ(wi), i=1nΓ(zi)=nΓ(z)\Gamma \left(z_i\right)\geq \Gamma \left(w_i\right),\ \sum \limits_{i=1}^n\Gamma \left(z_i\right)=n\Gamma^* (z)Theni=1n(Γ(xi)+Γ(yi))2Γ(zi)Γ(wi)n(Γ(x)+Γ(y))2Γ(z)Γ(w)\sum \limits_{i=1}^n \frac{\left(\Gamma \left(x_i\right)+\Gamma \left(y_i\right)\right)^2}{\Gamma \left(z_i\right)-\Gamma \left(w_i\right)}\geq n\frac{\left(\Gamma \left(x\right)+\Gamma \left(y\right)\right)^2}{\Gamma^* \left(z\right)-\Gamma \left(w\right)}
Gamma functionSummationinequalitiesfunction
Find all continuous functions

Source: 2019 Jozsef Wildt International Math Competition-W. 27

5/18/2020
Find all continuous functions f:RRf : \mathbb{R} \to \mathbb{R} such thatf(x)+0xtf(xt)dt=x,  xRf(-x)+\int \limits_0^xtf(x-t)dt=x,\ \forall\ x\in \mathbb{R}
integrationfunctional equationfunction
Prove these two expression

Source: 2019 Jozsef Wildt International Math Competition-W. 26

5/18/2020
Let nNn \in \mathbb{N}, n2n \geq 2, a1,a2,,anRa_1, a_2, \cdots , a_n \in \mathbb{R} and an=max{a1,a2,,an}a_n = max \{a_1, a_2,\cdots , a_n\}
[*]If tkt_k, tkRt'_k \in \mathbb{R}, k{1,2,,n}k \in \{1, 2,\cdots , n\} , tktkt_k \leq t'_k, for any k{1,2,,n1}k \in \{1, 2, \cdots, n - 1\} and k=1ntk=k=1ntk\sum \limits_{k=1}^nt_k=\sum \limits_{k=1}^nt'_kProve that k=1ntkakk=1ntkak\sum \limits_{k=1}^nt_ka_k\geq \sum \limits_{k=1}^nt'_ka_k [*] If bkb_k, ckR+c_k \in \mathbb{R}^*_+, k{1,2,,n}k \in \{1, 2,\cdots , n\} , bkckb_k \leq c_k for any k{1,2,,k1}k \in \{1, 2,\cdots, k - 1\} and b1b2bn=c1c2cnb_1b_2\cdots b_n=c_1c_2\cdots c_nProve that k=1nbkakk=1nckak\prod \limits_{k=1}^n b_k^{a_k}\geq \prod \limits_{k=1}^nc_k^{a_k}
Summation