MathDB
Find the limit in terms of A and B

Source: 2019 Jozsef Wildt International Math Competition-W. 21

May 18, 2020
integrationlimit

Problem Statement

Let ff be a continuously differentiable function on [0,1][0, 1] and mNm \in \mathbb{N}. Let A=f(1)A = f(1) and let B=01x1mf(x)dxB=\int \limits_{0}^1 x^{-\frac{1}{m}}f(x)dx. Calculate limnn(01f(x)dxk=1n(kmnm(k1)mnm)f((k1)mnm))\lim \limits_{n \to \infty} n\left(\int \limits_{0}^1 f(x)dx-\sum \limits_{k=1}^n \left(\frac{k^m}{n^m}-\frac{(k-1)^m}{n^m}\right)f\left(\frac{(k-1)^m}{n^m}\right)\right)in terms of AA and BB.