Source: 2019 Jozsef Wildt International Math Competition-W. 21
May 18, 2020
integrationlimit
Problem Statement
Let f be a continuously differentiable function on [0,1] and m∈N. Let A=f(1) and let B=0∫1x−m1f(x)dx. Calculate n→∞limn0∫1f(x)dx−k=1∑n(nmkm−nm(k−1)m)f(nm(k−1)m)in terms of A and B.