MathDB
Prove these two expression

Source: 2019 Jozsef Wildt International Math Competition-W. 26

May 18, 2020
Summation

Problem Statement

Let nNn \in \mathbb{N}, n2n \geq 2, a1,a2,,anRa_1, a_2, \cdots , a_n \in \mathbb{R} and an=max{a1,a2,,an}a_n = max \{a_1, a_2,\cdots , a_n\}
[*]If tkt_k, tkRt'_k \in \mathbb{R}, k{1,2,,n}k \in \{1, 2,\cdots , n\} , tktkt_k \leq t'_k, for any k{1,2,,n1}k \in \{1, 2, \cdots, n - 1\} and k=1ntk=k=1ntk\sum \limits_{k=1}^nt_k=\sum \limits_{k=1}^nt'_kProve that k=1ntkakk=1ntkak\sum \limits_{k=1}^nt_ka_k\geq \sum \limits_{k=1}^nt'_ka_k [*] If bkb_k, ckR+c_k \in \mathbb{R}^*_+, k{1,2,,n}k \in \{1, 2,\cdots , n\} , bkckb_k \leq c_k for any k{1,2,,k1}k \in \{1, 2,\cdots, k - 1\} and b1b2bn=c1c2cnb_1b_2\cdots b_n=c_1c_2\cdots c_nProve that k=1nbkakk=1nckak\prod \limits_{k=1}^n b_k^{a_k}\geq \prod \limits_{k=1}^nc_k^{a_k}