Source: 2019 Jozsef Wildt International Math Competition-W. 26
May 18, 2020
Summation
Problem Statement
Let n∈N, n≥2, a1,a2,⋯,an∈R and an=max{a1,a2,⋯,an}[*]If tk, tk′∈R, k∈{1,2,⋯,n} , tk≤tk′, for any k∈{1,2,⋯,n−1} and k=1∑ntk=k=1∑ntk′Prove that k=1∑ntkak≥k=1∑ntk′ak
[*] If bk, ck∈R+∗, k∈{1,2,⋯,n} , bk≤ck for any k∈{1,2,⋯,k−1} and b1b2⋯bn=c1c2⋯cnProve that k=1∏nbkak≥k=1∏nckak