MathDB
Find the limit of the expression made by 3 sequences

Source: 2019 Jozsef Wildt International Math Competition-W. 11

May 18, 2020
Sequenceslimit

Problem Statement

Let (sn)n1(s_n)_{n\geq 1} be a sequence given by sn=2n+k=1n1ks_n=-2\sqrt{n}+\sum \limits_{k=1}^n\frac{1}{\sqrt{k}} with limnsn=s=\lim \limits_{n \to \infty}s_n=s=Ioachimescu constant and (an)n1(a_n)_{n\geq 1} , (bn)n1(b_n)_{n\geq 1} be a positive real sequences such that limnan+1nan=aR+,limnbn+1bnn=bR+\lim \limits_{n\to \infty}\frac{a_{n+1}}{na_n}=a\in \mathbb{R}^*_+, \lim \limits_{n\to \infty}\frac{b_{n+1}}{b_n\sqrt{n}}=b\in \mathbb{R}^*_+Computelimn(1+esnesn+1)anbnn\lim \limits_{n\to \infty}\left(1+e^{s_n}-e^{s_{n+1}}\right)^{\sqrt[n]{a_nb_n}}