MathDB

1963 AMC 12/AHSME

Part of AMC 12/AHSME

Subcontests

(40)

Making bets

A person starting with 6464 cents and making 66 bets, wins three times and loses three times, the wins and losses occurring in random order. The chance for a win is equal to the chance for a loss. If each wager is for half the money remaining at the time of the bet, then the final result is:
<spanclass=latexbold>(A)</span> a loss of 27<spanclass=latexbold>(B)</span> a gain of 27<spanclass=latexbold>(C)</span> a loss of 37<span class='latex-bold'>(A)</span>\ \text{a loss of } 27 \qquad <span class='latex-bold'>(B)</span>\ \text{a gain of }27 \qquad <span class='latex-bold'>(C)</span>\ \text{a loss of }37 \qquad
<spanclass=latexbold>(D)</span> neither a gain nor a loss<spanclass=latexbold>(E)</span> a gain or a loss depending upon the order in which the wins and losses occur <span class='latex-bold'>(D)</span>\ \text{neither a gain nor a loss} \qquad <span class='latex-bold'>(E)</span>\ \text{a gain or a loss depending upon the order in which the wins and losses occur}
Note: Due to the lack of LaTeX\LaTeX packages, the numbers in the answer choices are in cents ¢

Difficult Logic

Form 1 Consider the statements:
<spanclass=latexbold>(1)</span> p qr<spanclass=latexbold>(2)</span> p qr<spanclass=latexbold>(3)</span> p q r<spanclass=latexbold>(4)</span> p q r<span class='latex-bold'>(1)</span>\ p\text{ } \wedge\sim q\wedge r \qquad <span class='latex-bold'>(2)</span>\ \sim p\text{ } \wedge\sim q\wedge r\qquad <span class='latex-bold'>(3)</span>\ p\text{ } \wedge\sim q\text{ }\wedge \sim r \qquad <span class='latex-bold'>(4)</span>\ \sim p\text{ } \wedge q\text{ }\wedge r ,
where p,q,p,q, and rr are propositions. How many of these imply the truth of (pq)r(p\rightarrow q)\rightarrow r?

<spanclass=latexbold>(A)</span> 0<spanclass=latexbold>(B)</span> 1<spanclass=latexbold>(C)</span> 2<spanclass=latexbold>(D)</span> 3<spanclass=latexbold>(E)</span> 4<span class='latex-bold'>(A)</span>\ 0 \qquad <span class='latex-bold'>(B)</span>\ 1\qquad <span class='latex-bold'>(C)</span>\ 2 \qquad <span class='latex-bold'>(D)</span>\ 3 \qquad <span class='latex-bold'>(E)</span>\ 4

Form 2 Consider the statements (1)(1) pp and rr are true and qq is false (2)(2) rr is true and pp and qq are false (3)(3) pp is true and qq and rr are false (4)(4) qq and rr are true and pp is false. How many of these imply the truth of the statement "rr is implied by the statement that pp implies qq"?
<spanclass=latexbold>(A)</span> 0<spanclass=latexbold>(B)</span> 1<spanclass=latexbold>(C)</span> 2<spanclass=latexbold>(D)</span> 3<spanclass=latexbold>(E)</span> 4<span class='latex-bold'>(A)</span>\ 0 \qquad <span class='latex-bold'>(B)</span>\ 1\qquad <span class='latex-bold'>(C)</span>\ 2 \qquad <span class='latex-bold'>(D)</span>\ 3 \qquad <span class='latex-bold'>(E)</span>\ 4
7
1

Perpendicular lines

Given the four equations:
<spanclass=latexbold>(1)</span> 3y2x=12<spanclass=latexbold>(2)</span> 2x3y=10<spanclass=latexbold>(3)</span> 3y+2x=12<spanclass=latexbold>(4)</span> 2y+3x=10<span class='latex-bold'>(1)</span>\ 3y-2x=12 \qquad <span class='latex-bold'>(2)</span>\ -2x-3y=10 \qquad <span class='latex-bold'>(3)</span>\ 3y+2x=12 \qquad <span class='latex-bold'>(4)</span>\ 2y+3x=10
The pair representing the perpendicular lines is:
<spanclass=latexbold>(A)</span> (1) and (4)<spanclass=latexbold>(B)</span> (1) and (3)<spanclass=latexbold>(C)</span> (1) and (2)<spanclass=latexbold>(D)</span> (2) and (4)<spanclass=latexbold>(E)</span> (2) and (3)<span class='latex-bold'>(A)</span>\ \text{(1) and (4)} \qquad <span class='latex-bold'>(B)</span>\ \text{(1) and (3)} \qquad <span class='latex-bold'>(C)</span>\ \text{(1) and (2)} \qquad <span class='latex-bold'>(D)</span>\ \text{(2) and (4)} \qquad <span class='latex-bold'>(E)</span>\ \text{(2) and (3)}