MathDB
More Magnitudes...

Source: AHSME 1963 Problem 22

January 10, 2014
ratioAMC

Problem Statement

Acute-angled triangle ABCABC is inscribed in a circle with center at OO; AB=120\stackrel \frown {AB} = 120 and BC=72\stackrel \frown {BC} = 72. A point EE is taken in minor arc ACAC such that OEOE is perpendicular to ACAC. Then the ratio of the magnitudes of angles OBEOBE and BACBAC is:
<spanclass=latexbold>(A)</span> 518<spanclass=latexbold>(B)</span> 29<spanclass=latexbold>(C)</span> 14<spanclass=latexbold>(D)</span> 13<spanclass=latexbold>(E)</span> 49<span class='latex-bold'>(A)</span>\ \dfrac{5}{18} \qquad <span class='latex-bold'>(B)</span>\ \dfrac{2}{9} \qquad <span class='latex-bold'>(C)</span>\ \dfrac{1}{4} \qquad <span class='latex-bold'>(D)</span>\ \dfrac{1}{3} \qquad <span class='latex-bold'>(E)</span>\ \dfrac{4}{9}