MathDB
Magnitudes of Angles

Source: AHSME 1963 Problem 6

January 9, 2014
AMC

Problem Statement

Triangle BADBAD is right-angled at BB. On ADAD there is a point CC for which AC=CDAC=CD and AB=BCAB=BC. The magnitude of angle DABDAB, in degrees, is:
<spanclass=latexbold>(A)</span> 6712<spanclass=latexbold>(B)</span> 60<spanclass=latexbold>(C)</span> 45<spanclass=latexbold>(D)</span> 30<spanclass=latexbold>(E)</span> 2212<span class='latex-bold'>(A)</span>\ 67\dfrac{1}{2} \qquad <span class='latex-bold'>(B)</span>\ 60 \qquad <span class='latex-bold'>(C)</span>\ 45 \qquad <span class='latex-bold'>(D)</span>\ 30 \qquad <span class='latex-bold'>(E)</span>\ 22\dfrac{1}{2}