MathDB
Ratio of areas

Source: AHSME 1963 Problem 15

January 9, 2014
ratiogeometryAMC

Problem Statement

A circle is inscribed in an equilateral triangle, and a square is inscribed in the circle. The ratio of the area of the triangle to the area of the square is:
<spanclass=latexbold>(A)</span> 3:1<spanclass=latexbold>(B)</span> 3:2<spanclass=latexbold>(C)</span> 33:2<spanclass=latexbold>(D)</span> 3:2<spanclass=latexbold>(E)</span> 3:22<span class='latex-bold'>(A)</span>\ \sqrt{3}:1 \qquad <span class='latex-bold'>(B)</span>\ \sqrt{3}:\sqrt{2} \qquad <span class='latex-bold'>(C)</span>\ 3\sqrt{3}:2 \qquad <span class='latex-bold'>(D)</span>\ 3:\sqrt{2} \qquad <span class='latex-bold'>(E)</span>\ 3:2\sqrt{2}