MathDB

Ukrainian TYM Qualifying - geometry

Part of Random Geometry Problems from Ukrainian Contests

Subcontests

(83)

geometric miniatures from V All-Ukrainian TYM

Fix the triangle ABCABC on the plane. 1. Denote by SL,SMS_L,S_M and SKS_K the areas of triangles whose vertices are, respectively, the bases of bisectors, medians and points of tangency of the inscribed circle of a given triangle ABCABC. Prove that SKSLSMS_K\le S_L\le S_M.
2. For the point XX, which is inside the triangle ABCABC, consider the triangle TXT_X, the vertices of which are the points of intersection of the lines AX,BX,CXAX, BX, CX with the lines BC,AC,ABBC, AC, AB, respectively. 2.1. Find the position of the point XX for which the area of ​​the triangle TxT_x is the largest possible. 2.2. Suggest an effective criterion for comparing the areas of triangles TxT_x for different positions of the point XX. 2.3. Find the positions of the point XX for which the perimeter of the triangle TxT_x is the smallest possible and the largest possible. 2.4. Propose an effective criterion for comparing the perimeters of triangles TxT_x for different positions of point XX. 2.5. Suggest and solve similar problems with respect to the extreme values ​​of other parameters (for example, the radius of the circumscribed circle, the length of the greatest height) of triangles TxT_x.
3. For the point YY, which is inside the circle ω\omega, circumscribed around the triangle ABCABC, consider the triangle ΔY\Delta_Y, the vertices of which are the points of intersection AY,BX,CXAY, BX, CX with the circle ω\omega. Suggest and solve similar problems for triangles ΔY\Delta_Y for different positions of point YY.
4. Suggest and solve similar problems for convex polygons.
5. For the point ZZ, which is inside the circle ω\omega, circumscribed around the triangle ABCABC, consider the triangle FZF_Z, the vertices of which are orthogonal projections of the point ZZ on the lines BCBC, ACAC and ABAB. Suggest and solve similar problems for triangles FZF_Z for different positions of the point ZZ.

measuring distance of a river bank using thumbes and fixed points

The following method of approximate measurement is known for distances. Suppose, for example, that the observer is on the river bank at point CC in order to measure its width. To do this, he fixes point AA on the opposite bank so that the angle between the shoreline and the line CACA is close to the line. Then the observer pulls forward the right hand with the raised thumb, closes left eye and aligns the raised finger with point AA. Next, opens the left eye, closes right and estimates the distance between the point on the opposite bank to which the finger points, and point AA. Multiply this distance by 1010 and get the approximate value of the distance to point AA, ie the width of the river. Justify this method of measuring distance.
[hide=original wording]Відомий наступний спосіб наближеного вимірювання відстані. Нехай, наприклад, спостерігач знаходиться на березі річки у точці C і має на меті виміряти її ширину. Для цього він фіксує точку A на протилежному березі так, щоб кут між лінією берега і прямою CA був близьким до прямого. Потім спостерігач витягує вперед праву руку з піднятим вгору великим пальцем, заплющує ліве око і суміщає піднятий палець з точкою A. Далі, відкриває ліве око, заплющує праве і оцінює відстань між точкою на протилежному березі, на яку вказує палець, і точкою A. Цю відстань множить на 10 і отримує наближене значення відстані до точки A, тобто ширини річки. Обґрунтуйте цей спосіб вимірювання відстані.