MathDB
criterion for a convex polygon to be cyclic if \alpha_i/ sin \beta_i = constant

Source: 2015 XVIII All-Ukrainian Tournament of Young Mathematicians named after M. Y. Yadrenko, Qualifying p22

May 7, 2021
CyclicpolygongeometryUkrainian TYM

Problem Statement

Let A1A2...A2n+1A_1A_2... A_{2n + 1} be a convex polygon, a1=A1A2a_1 = A_1A_2, a2​​=A2A3a_2 ​​= A_2A_3, ......, a2n=A2nA2n+1a_{2n} = A_{2n}A_{2n + 1}, a2n+1=A2n+1A1a_{2n + 1} = A_{2n + 1}A_1. Denote by: αi=Ai\alpha_i = \angle A_i, 1i2n+11 \le i \le 2n + 1, αk+2n+1=αk\alpha_{k + 2n + 1} = \alpha_k, k1k \ge 1, βi=αi+2+αi+4+...+αi+2n \beta_i = \alpha_{i + 2} + \alpha_{i + 4} +... + \alpha_{i + 2n}, 1i2n+11 \le i \le 2n + 1. Prove what if α1sinβ1=α2sinβ2=...=α2n+1sinβ2n+1\frac{\alpha_1}{\sin \beta_1}=\frac{\alpha_2}{\sin \beta_2}=...=\frac{\alpha_{2n+1}}{\sin \beta_{2n+1}} then a circle can be circumscribed around this polygon. Does the inverse statement hold a place?