S^2_{ABM}=CM^2/CD^2 S^2_{ABD}+(1- CM^2/CD^2)S_{ABC}, tetrahedron
Source: IV All-Ukrainian Tournament of Young Mathematicians, Qualifying p11
May 19, 2021
geometry3D geometrygeometric inequalitytetrahedronUkrainian TYM
Problem Statement
In the tetrahedron , the point is the projection of the point on the plane . Prove that the following statements are equivalent:
a) or
b) For each point M belonging to the segment , the following equation is satisfied
where means the area of triangle .