MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2013 Today's Calculation Of Integral
2013 Today's Calculation Of Integral
Part of
Today's Calculation Of Integral
Subcontests
(39)
899
1
Hide problems
Today's calculation of Integral 899
Find the limit as below.
lim
n
→
∞
(
1
2
+
2
2
+
⋯
+
n
2
)
(
1
3
+
2
3
+
⋯
+
n
3
)
(
1
4
+
2
4
+
⋯
+
n
4
)
(
1
5
+
2
5
+
⋯
+
n
5
)
2
\lim_{n\to\infty} \frac{(1^2+2^2+\cdots +n^2)(1^3+2^3+\cdots +n^3)(1^4+2^4+\cdots +n^4)}{(1^5+2^5+\cdots +n^5)^2}
n
→
∞
lim
(
1
5
+
2
5
+
⋯
+
n
5
)
2
(
1
2
+
2
2
+
⋯
+
n
2
)
(
1
3
+
2
3
+
⋯
+
n
3
)
(
1
4
+
2
4
+
⋯
+
n
4
)
898
1
Hide problems
Today's calculation of Integral 898
Let
a
,
b
a,\ b
a
,
b
be positive constants.Evaluate
∫
0
1
ln
(
x
+
a
)
x
+
a
(
x
+
b
)
x
+
b
(
x
+
a
)
(
x
+
b
)
ln
(
x
+
a
)
ln
(
x
+
b
)
d
x
.
\int_0^1 \frac{\ln \frac{(x+a)^{x+a}}{(x+b)^{x+b}}}{(x+a)(x+b)\ln (x+a)\ln (x+b)}\ dx.
∫
0
1
(
x
+
a
)
(
x
+
b
)
ln
(
x
+
a
)
ln
(
x
+
b
)
ln
(
x
+
b
)
x
+
b
(
x
+
a
)
x
+
a
d
x
.
897
1
Hide problems
Today's calculation of Integral 897
Find the volume
V
V
V
of the solid formed by a rotation of the region enclosed by the curve
y
=
2
x
−
1
y=2^{x}-1
y
=
2
x
−
1
and two lines
x
=
0
,
y
=
1
x=0,\ y=1
x
=
0
,
y
=
1
around the
y
y
y
axis.
896
1
Hide problems
Today's calculation of Integral 896
Given sequences
a
n
=
1
n
2
n
P
n
n
,
b
n
=
1
n
2
4
n
P
2
n
n
a_n=\frac{1}{n}{\sqrt[n] {_{2n}P_n}},\ b_n=\frac{1}{n^2}{\sqrt[n] {_{4n}P_{2n}}}
a
n
=
n
1
n
2
n
P
n
,
b
n
=
n
2
1
n
4
n
P
2
n
and
c
n
=
8
n
P
4
n
6
n
P
4
n
n
c_n=\sqrt[n]{\frac{_{8n}P_{4n}}{_{6n}P_{4n}}}
c
n
=
n
6
n
P
4
n
8
n
P
4
n
, find
lim
n
→
∞
a
n
,
lim
n
→
∞
b
n
\lim_{n\to\infty} a_n,\ \lim_{n\to\infty} b_n
lim
n
→
∞
a
n
,
lim
n
→
∞
b
n
and
lim
n
→
∞
c
n
.
\lim_{n\to\infty} c_n.
lim
n
→
∞
c
n
.
895
1
Hide problems
Today's calculation of Integral 895
In the coordinate plane, suppose that the parabola
C
:
y
=
−
p
2
x
2
+
q
(
p
>
0
,
q
>
0
)
C: y=-\frac{p}{2}x^2+q\ (p>0,\ q>0)
C
:
y
=
−
2
p
x
2
+
q
(
p
>
0
,
q
>
0
)
touches the circle with radius 1 centered on the origin at distinct two points. Find the minimum area of the figure enclosed by the part of
y
≥
0
y\geq 0
y
≥
0
of
C
C
C
and the
x
x
x
-axis.
894
1
Hide problems
Today's calculation of Integral 894
Let
a
a
a
be non zero real number. Find the area of the figure enclosed by the line
y
=
a
x
y=ax
y
=
a
x
, the curve
y
=
x
ln
(
x
+
1
)
.
y=x\ln (x+1).
y
=
x
ln
(
x
+
1
)
.
893
1
Hide problems
Today's calculation of Integral 893
Find the minimum value of
f
(
x
)
=
∫
0
π
4
∣
tan
t
−
x
∣
d
t
.
f(x)=\int_0^{\frac{\pi}{4}} |\tan t-x|dt.
f
(
x
)
=
∫
0
4
π
∣
tan
t
−
x
∣
d
t
.
891
1
Hide problems
Today's calculation of Integral 891
Given a triangle
O
A
B
OAB
O
A
B
with the vetices
O
(
0
,
0
,
0
)
,
A
(
1
,
0
,
0
)
,
B
(
1
,
1
,
0
)
O(0,\ 0,\ 0),\ A(1,\ 0,\ 0),\ B(1,\ 1,\ 0)
O
(
0
,
0
,
0
)
,
A
(
1
,
0
,
0
)
,
B
(
1
,
1
,
0
)
in the
x
y
z
xyz
x
yz
space. Let
V
V
V
be the cone obtained by rotating the triangle around the
x
x
x
-axis. Find the volume of the solid obtained by rotating the cone
V
V
V
around the
y
y
y
-axis.
890
1
Hide problems
Today's calculation of Integral 890
A function
f
n
(
x
)
(
n
=
1
,
2
,
⋯
)
f_n(x)\ (n=1,\ 2,\ \cdots)
f
n
(
x
)
(
n
=
1
,
2
,
⋯
)
is defined by
f
1
(
x
)
=
x
f_1(x)=x
f
1
(
x
)
=
x
and
f
n
(
x
)
=
x
+
e
2
∫
0
1
f
n
−
1
(
t
)
e
x
−
t
d
t
(
n
=
2
,
3
,
⋯
)
f_n(x)=x+\frac{e}{2}\int_0^1 f_{n-1}(t)e^{x-t}dt\ (n=2,\ 3,\ \cdots)
f
n
(
x
)
=
x
+
2
e
∫
0
1
f
n
−
1
(
t
)
e
x
−
t
d
t
(
n
=
2
,
3
,
⋯
)
. Find
f
n
(
x
)
f_n(x)
f
n
(
x
)
.
889
1
Hide problems
Today's calculation of Integral 889
Find the area
S
S
S
of the region enclosed by the curve
y
=
∣
x
−
1
x
∣
(
x
>
0
)
y=\left|x-\frac{1}{x}\right|\ (x>0)
y
=
x
−
x
1
(
x
>
0
)
and the line
y
=
2
y=2
y
=
2
.
888
1
Hide problems
Today's calculation of Integral 888
In the coordinate plane, given a circle
K
:
x
2
+
y
2
=
1
,
C
:
y
=
x
2
−
2
K: x^2+y^2=1,\ C: y=x^2-2
K
:
x
2
+
y
2
=
1
,
C
:
y
=
x
2
−
2
. Let
l
l
l
be the tangent line of
K
K
K
at
P
(
cos
θ
,
sin
θ
)
(
π
<
θ
<
2
π
)
.
P(\cos \theta,\ \sin \theta)\ (\pi<\theta <2\pi).
P
(
cos
θ
,
sin
θ
)
(
π
<
θ
<
2
π
)
.
Find the minimum area of the part enclosed by
l
l
l
and
C
C
C
.
887
1
Hide problems
Today's calculation of Integral 887
For the function
f
(
x
)
=
∫
0
x
d
t
1
+
t
2
f(x)=\int_0^x \frac{dt}{1+t^2}
f
(
x
)
=
∫
0
x
1
+
t
2
d
t
, answer the questions as follows.Note : Please solve the problems without using directly the formula
∫
1
1
+
x
2
d
x
=
tan
−
1
x
+
C
\int \frac{1}{1+x^2}\ dx=\tan^{-1}x +C
∫
1
+
x
2
1
d
x
=
tan
−
1
x
+
C
for Japanese High School students those who don't study arc sin x, arc cos x, arc tanx.(1) Find
f
(
3
)
f(\sqrt{3})
f
(
3
)
(2) Find
∫
0
3
x
f
(
x
)
d
x
\int_0^{\sqrt{3}} xf(x)\ dx
∫
0
3
x
f
(
x
)
d
x
(3) Prove that for
x
>
0
x>0
x
>
0
.
f
(
x
)
+
f
(
1
x
)
f(x)+f\left(\frac{1}{x}\right)
f
(
x
)
+
f
(
x
1
)
is constant, then find the value.
886
1
Hide problems
Today's calculation of Integral 886
Find the functions
f
(
x
)
,
g
(
x
)
f(x),\ g(x)
f
(
x
)
,
g
(
x
)
such that
f
(
x
)
=
e
x
sin
x
+
∫
0
π
u
g
(
u
)
d
u
f(x)=e^{x}\sin x+\int_0^{\pi} ug(u)\ du
f
(
x
)
=
e
x
sin
x
+
∫
0
π
ug
(
u
)
d
u
g
(
x
)
=
e
x
cos
x
+
∫
0
π
u
f
(
u
)
d
u
g(x)=e^{x}\cos x+\int_0^{\pi} uf(u)\ du
g
(
x
)
=
e
x
cos
x
+
∫
0
π
u
f
(
u
)
d
u
885
1
Hide problems
Today's calculation of Integral 885
Find the infinite integrals as follows.(1) 2013 Hiroshima City University entrance exam/Informatic Science
∫
x
2
2
−
x
2
d
x
\int \frac{x^2}{2-x^2}dx
∫
2
−
x
2
x
2
d
x
(2) 2013 Kanseigakuin University entrance exam/Science and Technology
∫
x
4
ln
x
d
x
\int x^4\ln x\ dx
∫
x
4
ln
x
d
x
(3) 2013 Shinsyu University entrance exam/Textile Science and Technology, Second-exam
∫
cos
3
x
sin
2
x
d
x
\int \frac{\cos ^ 3 x}{\sin ^ 2 x}\ dx
∫
s
i
n
2
x
c
o
s
3
x
d
x
884
1
Hide problems
Today's calculation of Integral 884
Prove that :
π
(
e
−
1
)
<
∫
0
π
e
∣
cos
4
x
∣
d
x
<
2
(
e
π
2
−
1
)
\pi (e-1)<\int_0^{\pi} e^{|\cos 4x|}dx<2(e^{\frac{\pi}{2}}-1)
π
(
e
−
1
)
<
∫
0
π
e
∣
c
o
s
4
x
∣
d
x
<
2
(
e
2
π
−
1
)
883
1
Hide problems
Today's calculation of Integral 883
Prove that for each positive integer
n
n
n
4
n
2
+
1
4
n
2
−
1
∫
0
π
(
e
x
−
e
−
x
)
cos
2
n
x
d
x
>
e
π
−
e
−
π
−
2
4
ln
(
2
n
+
1
)
2
(
2
n
−
1
)
(
n
+
3
)
.
\frac{4n^2+1}{4n^2-1}\int_0^{\pi} (e^{x}-e^{-x})\cos 2nx\ dx>\frac{e^{\pi}-e^{-\pi}-2}{4}\ln \frac{(2n+1)^2}{(2n-1)(n+3)}.
4
n
2
−
1
4
n
2
+
1
∫
0
π
(
e
x
−
e
−
x
)
cos
2
n
x
d
x
>
4
e
π
−
e
−
π
−
2
ln
(
2
n
−
1
)
(
n
+
3
)
(
2
n
+
1
)
2
.
882
1
Hide problems
Today's calculation of Integral 882
Find
lim
n
→
∞
∑
k
=
1
n
1
n
+
k
(
ln
(
n
+
k
)
−
ln
n
)
\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n+k}(\ln (n+k)-\ln\ n)
lim
n
→
∞
∑
k
=
1
n
n
+
k
1
(
ln
(
n
+
k
)
−
ln
n
)
.
881
1
Hide problems
Today's calculation of Integral 881
Evaluate
∫
−
π
π
(
∑
k
=
1
2013
sin
k
x
)
2
d
x
\int_{-\pi}^{\pi} \left(\sum_{k=1}^{2013} \sin kx\right)^2dx
∫
−
π
π
(
∑
k
=
1
2013
sin
k
x
)
2
d
x
.
880
1
Hide problems
Today's calculation of Integral 880
For
a
>
2
a>2
a
>
2
, let
f
(
t
)
=
sin
2
a
t
+
t
2
a
t
sin
a
t
,
g
(
t
)
=
sin
2
a
t
−
t
2
a
t
sin
a
t
(
0
<
∣
t
∣
<
π
2
a
)
f(t)=\frac{\sin ^ 2 at+t^2}{at\sin at},\ g(t)=\frac{\sin ^ 2 at-t^2}{at\sin at}\ \left(0<|t|<\frac{\pi}{2a}\right)
f
(
t
)
=
a
t
s
i
n
a
t
s
i
n
2
a
t
+
t
2
,
g
(
t
)
=
a
t
s
i
n
a
t
s
i
n
2
a
t
−
t
2
(
0
<
∣
t
∣
<
2
a
π
)
andlet
C
:
x
2
−
y
2
=
4
a
2
(
x
≥
2
a
)
.
C: x^2-y^2=\frac{4}{a^2}\ \left(x\geq \frac{2}{a}\right).
C
:
x
2
−
y
2
=
a
2
4
(
x
≥
a
2
)
.
Answer the questions as follows.(1) Show that the point
(
f
(
t
)
,
g
(
t
)
)
(f(t),\ g(t))
(
f
(
t
)
,
g
(
t
))
lies on the curve
C
C
C
.(2) Find the normal line of the curve
C
C
C
at the point
(
lim
t
→
0
f
(
t
)
,
lim
t
→
0
g
(
t
)
)
.
\left(\lim_{t\rightarrow 0} f(t),\ \lim_{t\rightarrow 0} g(t)\right).
(
lim
t
→
0
f
(
t
)
,
lim
t
→
0
g
(
t
)
)
.
(3) Let
V
(
a
)
V(a)
V
(
a
)
be the volume of the solid generated by a rotation of the part enclosed by the curve
C
C
C
, the nornal line found in (2) and the
x
x
x
-axis. Express
V
(
a
)
V(a)
V
(
a
)
in terms of
a
a
a
, then find
lim
a
→
∞
V
(
a
)
\lim_{a\to\infty} V(a)
lim
a
→
∞
V
(
a
)
.
879
1
Hide problems
Today's calculation of Integral 879
Evaluate the integrals as follows.(1)
∫
x
2
2
−
x
d
x
\int \frac{x^2}{2-x}\ dx
∫
2
−
x
x
2
d
x
(2)
∫
x
5
+
x
3
3
d
x
\int \sqrt[3]{x^5+x^3}\ dx
∫
3
x
5
+
x
3
d
x
(3)
∫
0
1
(
1
−
x
)
cos
π
x
d
x
\int_0^1 (1-x)\cos \pi x\ dx
∫
0
1
(
1
−
x
)
cos
π
x
d
x
878
1
Hide problems
Today's calculation of Integral 878
A cubic function
f
(
x
)
f(x)
f
(
x
)
satisfies the equation
sin
3
t
=
f
(
sin
t
)
\sin 3t=f(\sin t)
sin
3
t
=
f
(
sin
t
)
for all real numbers
t
t
t
.Evaluate
∫
0
1
f
(
x
)
2
1
−
x
2
d
x
\int_0^1 f(x)^2\sqrt{1-x^2}\ dx
∫
0
1
f
(
x
)
2
1
−
x
2
d
x
.
877
1
Hide problems
Today's calculation of Integral 877
Let
f
(
x
)
=
lim
n
→
∞
sin
n
+
2
x
+
cos
n
+
2
x
sin
n
x
+
cos
n
x
f(x)=\lim_{n\to\infty} \frac{\sin^{n+2}x+\cos^{n+2}x}{\sin^n x+\cos^n x}
f
(
x
)
=
lim
n
→
∞
s
i
n
n
x
+
c
o
s
n
x
s
i
n
n
+
2
x
+
c
o
s
n
+
2
x
for
0
≤
x
≤
π
2
.
0\leq x\leq \frac{\pi}2.
0
≤
x
≤
2
π
.
Evaluate
∫
0
π
2
f
(
x
)
d
x
.
\int_0^{\frac{\pi}2} f(x)\ dx.
∫
0
2
π
f
(
x
)
d
x
.
876
1
Hide problems
Today's calculation of Integral 876
Suppose a function
f
(
x
)
f(x)
f
(
x
)
is continuous on
[
−
1
,
1
]
[-1,\ 1]
[
−
1
,
1
]
and satisfies the condition :1)
f
(
−
1
)
≥
f
(
1
)
.
f(-1)\geq f(1).
f
(
−
1
)
≥
f
(
1
)
.
2)
x
+
f
(
x
)
x+f(x)
x
+
f
(
x
)
is non decreasing function.3)
∫
−
1
1
f
(
x
)
d
x
=
0.
\int_{-1}^ 1 f(x)\ dx=0.
∫
−
1
1
f
(
x
)
d
x
=
0.
Show that
∫
−
1
1
f
(
x
)
2
d
x
≤
2
3
.
\int_{-1}^1 f(x)^2dx\leq \frac 23.
∫
−
1
1
f
(
x
)
2
d
x
≤
3
2
.
875
1
Hide problems
Today's calculation of Integral 875
Evaluate
∫
0
1
x
2
+
x
+
1
x
4
+
x
3
+
x
2
+
x
+
1
d
x
.
\int_0^1 \frac{x^2+x+1}{x^4+x^3+x^2+x+1}\ dx.
∫
0
1
x
4
+
x
3
+
x
2
+
x
+
1
x
2
+
x
+
1
d
x
.
874
1
Hide problems
Today's calculation of Integral 874
Given a parabola
C
:
y
=
1
−
x
2
C : y=1-x^2
C
:
y
=
1
−
x
2
in
x
y
xy
x
y
-palne with the origin
O
O
O
. Take two points
P
(
p
,
1
−
p
2
)
,
Q
(
q
,
1
−
q
2
)
(
p
<
q
)
P(p,\ 1-p^2),\ Q(q,\ 1-q^2)\ (p<q)
P
(
p
,
1
−
p
2
)
,
Q
(
q
,
1
−
q
2
)
(
p
<
q
)
on
C
C
C
.(1) Express the area
S
S
S
of the part enclosed by two segments
O
P
,
O
Q
OP,\ OQ
OP
,
OQ
and the parabalola
C
C
C
in terms of
p
,
q
p,\ q
p
,
q
.(2) If
q
=
p
+
1
q=p+1
q
=
p
+
1
, then find the minimum value of
S
S
S
.(3) If
p
q
=
−
1
pq=-1
pq
=
−
1
, then find the minimum value of
S
S
S
.
873
1
Hide problems
Today's calculation of Integral 873
Let
a
,
b
a,\ b
a
,
b
be positive real numbers. Consider the circle
C
1
:
(
x
−
a
)
2
+
y
2
=
a
2
C_1: (x-a)^2+y^2=a^2
C
1
:
(
x
−
a
)
2
+
y
2
=
a
2
and the ellipse
C
2
:
x
2
+
y
2
b
2
=
1.
C_2: x^2+\frac{y^2}{b^2}=1.
C
2
:
x
2
+
b
2
y
2
=
1.
(1) Find the condition for which
C
1
C_1
C
1
is inscribed in
C
2
C_2
C
2
.(2) Suppose
b
=
1
3
b=\frac{1}{\sqrt{3}}
b
=
3
1
and
C
1
C_1
C
1
is inscribed in
C
2
C_2
C
2
. Find the coordinate
(
p
,
q
)
(p,\ q)
(
p
,
q
)
of the point of tangency in the first quadrant for
C
1
C_1
C
1
and
C
2
C_2
C
2
.(3) Under the condition in (1), find the area of the part enclosed by
C
1
,
C
2
C_1,\ C_2
C
1
,
C
2
for
x
≥
p
x\geq p
x
≥
p
.60 point
872
1
Hide problems
Today's calculation of Integral 872
Let
n
n
n
be a positive integer.(1) For a positive integer
k
k
k
such that
1
≤
k
≤
n
1\leq k\leq n
1
≤
k
≤
n
, Show that :
∫
k
−
1
2
n
π
k
2
n
π
sin
2
n
t
cos
t
d
t
=
(
−
1
)
k
+
1
2
n
4
n
2
−
1
(
cos
k
2
n
π
+
cos
k
−
1
2
n
π
)
.
\int_{\frac{k-1}{2n}\pi}^{\frac{k}{2n}\pi} \sin 2nt\cos t\ dt=(-1)^{k+1}\frac{2n}{4n^2-1}(\cos \frac{k}{2n}\pi +\cos \frac{k-1}{2n}\pi).
∫
2
n
k
−
1
π
2
n
k
π
sin
2
n
t
cos
t
d
t
=
(
−
1
)
k
+
1
4
n
2
−
1
2
n
(
cos
2
n
k
π
+
cos
2
n
k
−
1
π
)
.
(2) Find the area
S
n
S_n
S
n
of the part expressed by a parameterized curve
C
n
:
x
=
sin
t
,
y
=
sin
2
n
t
(
0
≤
t
≤
π
)
.
C_n: x=\sin t,\ y=\sin 2nt\ (0\leq t\leq \pi).
C
n
:
x
=
sin
t
,
y
=
sin
2
n
t
(
0
≤
t
≤
π
)
.
If necessary, you may use
∑
k
=
1
n
−
1
cos
k
2
n
π
=
1
2
(
1
tan
π
4
n
−
1
)
(
n
≥
2
)
.
{\sum_{k=1}^{n-1} \cos \frac{k}{2n}\pi =\frac 12(\frac{1}{\tan \frac{\pi}{4n}}-1})\ (n\geq 2).
∑
k
=
1
n
−
1
cos
2
n
k
π
=
2
1
(
t
a
n
4
n
π
1
−
1
)
(
n
≥
2
)
.
(3) Find
lim
n
→
∞
S
n
.
\lim_{n\to\infty} S_n.
lim
n
→
∞
S
n
.
871
1
Hide problems
Today's calculation of Integral 871
Define sequences
{
a
n
}
,
{
b
n
}
\{a_n\},\ \{b_n\}
{
a
n
}
,
{
b
n
}
by
a
n
=
∫
−
π
6
π
6
e
n
sin
θ
d
θ
,
b
n
=
∫
−
π
6
π
6
e
n
sin
θ
cos
θ
d
θ
(
n
=
1
,
2
,
3
,
⋯
)
.
a_n=\int_{-\frac {\pi}6}^{\frac{\pi}6} e^{n\sin \theta}d\theta,\ b_n=\int_{-\frac {\pi}6}^{\frac{\pi}6} e^{n\sin \theta}\cos \theta d\theta\ (n=1,\ 2,\ 3,\ \cdots).
a
n
=
∫
−
6
π
6
π
e
n
s
i
n
θ
d
θ
,
b
n
=
∫
−
6
π
6
π
e
n
s
i
n
θ
cos
θ
d
θ
(
n
=
1
,
2
,
3
,
⋯
)
.
(1) Find
b
n
b_n
b
n
.(2) Prove that for each
n
n
n
,
b
n
≤
a
n
≤
2
3
b
n
.
b_n\leq a_n\leq \frac 2{\sqrt{3}}b_n.
b
n
≤
a
n
≤
3
2
b
n
.
(3) Find
lim
n
→
∞
1
n
ln
(
n
a
n
)
.
\lim_{n\to\infty} \frac 1{n}\ln (na_n).
lim
n
→
∞
n
1
ln
(
n
a
n
)
.
870
1
Hide problems
Today's calculation of Integral 870
Consider the ellipse
E
:
3
x
2
+
y
2
=
3
E: 3x^2+y^2=3
E
:
3
x
2
+
y
2
=
3
and the hyperbola
H
:
x
y
=
3
4
.
H: xy=\frac 34.
H
:
x
y
=
4
3
.
(1) Find all points of intersection of
E
E
E
and
H
H
H
.(2) Find the area of the region expressed by the system of inequality
{
3
x
2
+
y
2
≤
3
e
m
s
p
;
x
y
≥
3
4
,
e
m
s
p
;
\left\{ \begin{array}{ll} 3x^2+y^2\leq 3 &  \\ xy\geq \frac 34 , &  \end{array} \right.
{
3
x
2
+
y
2
≤
3
x
y
≥
4
3
,
e
m
s
p
;
e
m
s
p
;
869
1
Hide problems
Today's calculation of Integral 869
Let
I
n
=
1
n
+
1
∫
0
π
x
(
sin
n
x
+
n
π
cos
n
x
)
d
x
(
n
=
1
,
2
,
⋯
)
.
I_n=\frac{1}{n+1}\int_0^{\pi} x(\sin nx+n\pi\cos nx)dx\ \ (n=1,\ 2,\ \cdots).
I
n
=
n
+
1
1
∫
0
π
x
(
sin
n
x
+
nπ
cos
n
x
)
d
x
(
n
=
1
,
2
,
⋯
)
.
Answer the questions below.(1) Find
I
n
.
I_n.
I
n
.
(2) Find
∑
n
=
1
∞
I
n
.
\sum_{n=1}^{\infty} I_n.
∑
n
=
1
∞
I
n
.
868
1
Hide problems
Today's calculation of Integral 868
In the coordinate space, define a square
S
S
S
, defined by the inequality
∣
x
∣
≤
1
,
∣
y
∣
≤
1
|x|\leq 1,\ |y|\leq 1
∣
x
∣
≤
1
,
∣
y
∣
≤
1
on the
x
y
xy
x
y
-plane, with four vertices
A
(
−
1
,
1
,
0
)
,
B
(
1
,
1
,
0
)
,
C
(
1
,
−
1
,
0
)
,
D
(
−
1
,
−
1
,
0
)
A(-1,\ 1,\ 0),\ B(1,\ 1,\ 0),\ C(1,-1,\ 0), D(-1,-1,\ 0)
A
(
−
1
,
1
,
0
)
,
B
(
1
,
1
,
0
)
,
C
(
1
,
−
1
,
0
)
,
D
(
−
1
,
−
1
,
0
)
. Let
V
1
V_1
V
1
be the solid by a rotation of the square
S
S
S
about the line
B
D
BD
B
D
as the axis of rotation, and let
V
2
V_2
V
2
be the solid by a rotation of the square
S
S
S
about the line
A
C
AC
A
C
as the axis of rotation.(1) For a real number
t
t
t
such that
0
≤
t
<
1
0\leq t<1
0
≤
t
<
1
, find the area of cross section of
V
1
V_1
V
1
cut by the plane
x
=
t
x=t
x
=
t
.(2) Find the volume of the common part of
V
1
V_1
V
1
and
V
2
V_2
V
2
.
867
1
Hide problems
Today's calculation of Integral 867
Express
∫
0
2
f
(
x
)
d
x
\int_0^2 f(x)dx
∫
0
2
f
(
x
)
d
x
for any quadratic functions
f
(
x
)
f(x)
f
(
x
)
in terms of
f
(
0
)
,
f
(
1
)
f(0),\ f(1)
f
(
0
)
,
f
(
1
)
and
f
(
2
)
.
f(2).
f
(
2
)
.
866
1
Hide problems
Today's calculation of Integral 866
Given a solid
R
R
R
contained in a semi cylinder with the hight
1
1
1
which has a semicircle with radius
1
1
1
as the base. The cross section at the hight
x
(
0
≤
x
≤
1
)
x\ (0\leq x\leq 1)
x
(
0
≤
x
≤
1
)
is the form combined with two right-angled triangles as attached figure as below. Answer the following questions.(1) Find the cross-sectional area
S
(
x
)
S(x)
S
(
x
)
at the hight
x
x
x
.(2) Find the volume of
R
R
R
. If necessary, when you integrate, set
x
=
sin
t
.
x=\sin t.
x
=
sin
t
.
865
1
Hide problems
Today's calculation of Integral 865
Find the volume of the solid generated by a rotation of the region enclosed by the curve
y
=
x
3
−
x
y=x^3-x
y
=
x
3
−
x
and the line
y
=
x
y=x
y
=
x
about the line
y
=
x
y=x
y
=
x
as the axis of rotation.
864
1
Hide problems
Today's calculation of Integral 864
Let
m
,
n
m,\ n
m
,
n
be positive integer such that
2
≤
m
<
n
2\leq m<n
2
≤
m
<
n
.(1) Prove the inequality as follows.
n
+
1
−
m
m
(
n
+
1
)
<
1
m
2
+
1
(
m
+
1
)
2
+
⋯
+
1
(
n
−
1
)
2
+
1
n
2
<
n
+
1
−
m
n
(
m
−
1
)
\frac{n+1-m}{m(n+1)}<\frac{1}{m^2}+\frac{1}{(m+1)^2}+\cdots +\frac{1}{(n-1)^2}+\frac{1}{n^2}<\frac{n+1-m}{n(m-1)}
m
(
n
+
1
)
n
+
1
−
m
<
m
2
1
+
(
m
+
1
)
2
1
+
⋯
+
(
n
−
1
)
2
1
+
n
2
1
<
n
(
m
−
1
)
n
+
1
−
m
(2) Prove the inequality as follows.
3
2
≤
lim
n
→
∞
(
1
+
1
2
2
+
⋯
+
1
n
2
)
≤
2
\frac 32\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq 2
2
3
≤
n
→
∞
lim
(
1
+
2
2
1
+
⋯
+
n
2
1
)
≤
2
(3) Prove the inequality which is made precisely in comparison with the inequality in (2) as follows.
29
18
≤
lim
n
→
∞
(
1
+
1
2
2
+
⋯
+
1
n
2
)
≤
61
36
\frac {29}{18}\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq \frac{61}{36}
18
29
≤
n
→
∞
lim
(
1
+
2
2
1
+
⋯
+
n
2
1
)
≤
36
61
863
1
Hide problems
Today's calculation of Integral 863
For
0
<
t
≤
1
0<t\leq 1
0
<
t
≤
1
, let
F
(
t
)
=
1
t
∫
0
π
2
t
∣
cos
2
x
∣
d
x
.
F(t)=\frac{1}{t}\int_0^{\frac{\pi}{2}t} |\cos 2x|\ dx.
F
(
t
)
=
t
1
∫
0
2
π
t
∣
cos
2
x
∣
d
x
.
(1) Find
lim
t
→
0
F
(
t
)
.
\lim_{t\rightarrow 0} F(t).
lim
t
→
0
F
(
t
)
.
(2) Find the range of
t
t
t
such that
F
(
t
)
≥
1.
F(t)\geq 1.
F
(
t
)
≥
1.
862
1
Hide problems
Today's calculation of Integral 862
Draw a tangent with positive slope to a parabola
y
=
x
2
+
1
y=x^2+1
y
=
x
2
+
1
. Find the
x
x
x
-coordinate such that the area of the figure bounded by the parabola, the tangent and the coordinate axisis is
11
3
.
\frac{11}{3}.
3
11
.
861
1
Hide problems
Today's calculation of Integral 861
Answer the questions as below.(1) Find the local minimum of
y
=
x
(
1
−
x
2
)
e
x
2
.
y=x(1-x^2)e^{x^2}.
y
=
x
(
1
−
x
2
)
e
x
2
.
(2) Find the total area of the part bounded the graph of the function in (1) and the
x
x
x
-axis.
860
1
Hide problems
Today's calculation of Integral 860
For a function
f
(
x
)
(
x
≥
1
)
f(x)\ (x\geq 1)
f
(
x
)
(
x
≥
1
)
satisfying
f
(
x
)
=
(
log
e
x
)
2
−
∫
1
e
f
(
t
)
t
d
t
f(x)=(\log_e x)^2-\int_1^e \frac{f(t)}{t}dt
f
(
x
)
=
(
lo
g
e
x
)
2
−
∫
1
e
t
f
(
t
)
d
t
, answer the questions as below.(a) Find
f
(
x
)
f(x)
f
(
x
)
and the
y
y
y
-coordinate of the inflection point of the curve
y
=
f
(
x
)
y=f(x)
y
=
f
(
x
)
.(b) Find the area of the figure bounded by the tangent line of
y
=
f
(
x
)
y=f(x)
y
=
f
(
x
)
at the point
(
e
,
f
(
e
)
)
(e,\ f(e))
(
e
,
f
(
e
))
, the curve
y
=
f
(
x
)
y=f(x)
y
=
f
(
x
)
and the line
x
=
1
x=1
x
=
1
.