MathDB
Today's calculation of Integral 883

Source: 2013 Fukushima University entrance exam

June 29, 2013
calculusintegrationtrigonometrylogarithmscalculus computationsIntegral inequality

Problem Statement

Prove that for each positive integer nn
4n2+14n210π(exex)cos2nx dx>eπeπ24ln(2n+1)2(2n1)(n+3).\frac{4n^2+1}{4n^2-1}\int_0^{\pi} (e^{x}-e^{-x})\cos 2nx\ dx>\frac{e^{\pi}-e^{-\pi}-2}{4}\ln \frac{(2n+1)^2}{(2n-1)(n+3)}.