MathDB
Today's calculation of Integral 880

Source: 2013 Aichi Prefectural University entrance exam

June 29, 2013
calculusintegrationtrigonometrylimitgeometrygeometric transformationrotation

Problem Statement

For a>2a>2, let f(t)=sin2at+t2atsinat, g(t)=sin2att2atsinat (0<t<π2a)f(t)=\frac{\sin ^ 2 at+t^2}{at\sin at},\ g(t)=\frac{\sin ^ 2 at-t^2}{at\sin at}\ \left(0<|t|<\frac{\pi}{2a}\right) and
let C:x2y2=4a2 (x2a).C: x^2-y^2=\frac{4}{a^2}\ \left(x\geq \frac{2}{a}\right). Answer the questions as follows.
(1) Show that the point (f(t), g(t))(f(t),\ g(t)) lies on the curve CC.
(2) Find the normal line of the curve CC at the point (limt0f(t), limt0g(t)).\left(\lim_{t\rightarrow 0} f(t),\ \lim_{t\rightarrow 0} g(t)\right).
(3) Let V(a)V(a) be the volume of the solid generated by a rotation of the part enclosed by the curve CC, the nornal line found in (2) and the xx-axis. Express V(a)V(a) in terms of aa, then find limaV(a)\lim_{a\to\infty} V(a).