MathDB
Today's calculation of Integral 872

Source: 2013 Tsukuba University entrance exam

March 15, 2013
calculusintegrationtrigonometrygeometrylimitfunctioncalculus computations

Problem Statement

Let nn be a positive integer.
(1) For a positive integer kk such that 1kn1\leq k\leq n, Show that : k12nπk2nπsin2ntcost dt=(1)k+12n4n21(cosk2nπ+cosk12nπ).\int_{\frac{k-1}{2n}\pi}^{\frac{k}{2n}\pi} \sin 2nt\cos t\ dt=(-1)^{k+1}\frac{2n}{4n^2-1}(\cos \frac{k}{2n}\pi +\cos \frac{k-1}{2n}\pi).
(2) Find the area SnS_n of the part expressed by a parameterized curve Cn:x=sint, y=sin2nt (0tπ).C_n: x=\sin t,\ y=\sin 2nt\ (0\leq t\leq \pi).
If necessary, you may use k=1n1cosk2nπ=12(1tanπ4n1) (n2).{\sum_{k=1}^{n-1} \cos \frac{k}{2n}\pi =\frac 12(\frac{1}{\tan \frac{\pi}{4n}}-1})\ (n\geq 2).
(3) Find limnSn.\lim_{n\to\infty} S_n.