Let n be a positive integer.(1) For a positive integer k such that 1≤k≤n, Show that :
∫2nk−1π2nkπsin2ntcostdt=(−1)k+14n2−12n(cos2nkπ+cos2nk−1π).(2) Find the area Sn of the part expressed by a parameterized curve Cn:x=sint,y=sin2nt(0≤t≤π).If necessary, you may use ∑k=1n−1cos2nkπ=21(tan4nπ1−1)(n≥2).(3) Find limn→∞Sn.