MathDB

1993 AMC 12/AHSME

Part of AMC 12/AHSME

Subcontests

(30)

1993 AMC 12 #20 - Complex Equation

Consider the equation 10z23izk=010z^2-3iz-k=0, where zz is a complex variable and i2=1i^2=-1. Which of the following statements is true?
<spanclass=latexbold>(A)</span> For all positive real numbers k, both roots are pure imaginary.<spanclass=latexbold>(B)</span> For all negative real numbers k, both roots are pure imaginary.<spanclass=latexbold>(C)</span> For all pure imaginary numbers k, both roots are real and rational.<spanclass=latexbold>(D)</span> For all pure imaginary numbers k, both roots are real and irrational.<spanclass=latexbold>(E)</span> For all complex numbers k, neither root is real. <span class='latex-bold'>(A)</span>\ \text{For all positive real numbers}\ k,\ \text{both roots are pure imaginary.} \\ \qquad<span class='latex-bold'>(B)</span>\ \text{For all negative real numbers}\ k,\ \text{both roots are pure imaginary.} \\ \qquad<span class='latex-bold'>(C)</span>\ \text{For all pure imaginary numbers}\ k,\ \text{both roots are real and rational.} \\ \qquad<span class='latex-bold'>(D)</span>\ \text{For all pure imaginary numbers}\ k,\ \text{both roots are real and irrational.} \\ \qquad<span class='latex-bold'>(E)</span>\ \text{For all complex numbers}\ k,\ \text{neither root is real.}

1993 AMC 12 #22 - Stack of Blocks

Twenty cubical blocks are arranged as shown. First, 1010 are arranged in a triangular pattern; then a layer of 66, arranged in a triangular pattern, is centered on the 1010; then a layer of 33, arranged in a triangular pattern, is centered on the 66; and finally one block is centered on top of the third layer. The blocks in the bottom layer are numbered 11 through 1010 in some order. Each block in layers 2,32, 3 and 44 is assigned the number which is the sum of the numbers assigned to the three blocks on which it rests. Find the smallest possible number which could be assigned to the top block. [asy] size((400)); draw((0,0)--(5,0)--(5,5)--(0,5)--(0,0), linewidth(1)); draw((5,0)--(10,0)--(15,0)--(20,0)--(20,5)--(15,5)--(10,5)--(5,5)--(6,7)--(11,7)--(16,7)--(21,7)--(21,2)--(20,0), linewidth(1)); draw((10,0)--(10,5)--(11,7), linewidth(1)); draw((15,0)--(15,5)--(16,7), linewidth(1)); draw((20,0)--(20,5)--(21,7), linewidth(1)); draw((0,5)--(1,7)--(6,7), linewidth(1)); draw((3.5,7)--(4.5,9)--(9.5,9)--(14.5,9)--(19.5,9)--(18.5,7)--(19.5,9)--(19.5,7), linewidth(1)); draw((8.5,7)--(9.5,9), linewidth(1)); draw((13.5,7)--(14.5,9), linewidth(1)); draw((7,9)--(8,11)--(13,11)--(18,11)--(17,9)--(18,11)--(18,9), linewidth(1)); draw((12,9)--(13,11), linewidth(1)); draw((10.5,11)--(11.5,13)--(16.5,13)--(16.5,11)--(16.5,13)--(15.5,11), linewidth(1)); draw((25,0)--(30,0)--(30,5)--(25,5)--(25,0), dashed); draw((30,0)--(35,0)--(40,0)--(45,0)--(45,5)--(40,5)--(35,5)--(30,5)--(31,7)--(36,7)--(41,7)--(46,7)--(46,2)--(45,0), dashed); draw((35,0)--(35,5)--(36,7), dashed); draw((40,0)--(40,5)--(41,7), dashed); draw((45,0)--(45,5)--(46,7), dashed); draw((25,5)--(26,7)--(31,7), dashed); draw((28.5,7)--(29.5,9)--(34.5,9)--(39.5,9)--(44.5,9)--(43.5,7)--(44.5,9)--(44.5,7), dashed); draw((33.5,7)--(34.5,9), dashed); draw((38.5,7)--(39.5,9), dashed); draw((32,9)--(33,11)--(38,11)--(43,11)--(42,9)--(43,11)--(43,9), dashed); draw((37,9)--(38,11), dashed); draw((35.5,11)--(36.5,13)--(41.5,13)--(41.5,11)--(41.5,13)--(40.5,11), dashed); draw((50,0)--(55,0)--(55,5)--(50,5)--(50,0), dashed); draw((55,0)--(60,0)--(65,0)--(70,0)--(70,5)--(65,5)--(60,5)--(55,5)--(56,7)--(61,7)--(66,7)--(71,7)--(71,2)--(70,0), dashed); draw((60,0)--(60,5)--(61,7), dashed); draw((65,0)--(65,5)--(66,7), dashed); draw((70,0)--(70,5)--(71,7), dashed); draw((50,5)--(51,7)--(56,7), dashed); draw((53.5,7)--(54.5,9)--(59.5,9)--(64.5,9)--(69.5,9)--(68.5,7)--(69.5,9)--(69.5,7), dashed); draw((58.5,7)--(59.5,9), dashed); draw((63.5,7)--(64.5,9), dashed); draw((57,9)--(58,11)--(63,11)--(68,11)--(67,9)--(68,11)--(68,9), dashed); draw((62,9)--(63,11), dashed); draw((60.5,11)--(61.5,13)--(66.5,13)--(66.5,11)--(66.5,13)--(65.5,11), dashed); draw((75,0)--(80,0)--(80,5)--(75,5)--(75,0), dashed); draw((80,0)--(85,0)--(90,0)--(95,0)--(95,5)--(90,5)--(85,5)--(80,5)--(81,7)--(86,7)--(91,7)--(96,7)--(96,2)--(95,0), dashed); draw((85,0)--(85,5)--(86,7), dashed); draw((90,0)--(90,5)--(91,7), dashed); draw((95,0)--(95,5)--(96,7), dashed); draw((75,5)--(76,7)--(81,7), dashed); draw((78.5,7)--(79.5,9)--(84.5,9)--(89.5,9)--(94.5,9)--(93.5,7)--(94.5,9)--(94.5,7), dashed); draw((83.5,7)--(84.5,9), dashed); draw((88.5,7)--(89.5,9), dashed); draw((82,9)--(83,11)--(88,11)--(93,11)--(92,9)--(93,11)--(93,9), dashed); draw((87,9)--(88,11), dashed); draw((85.5,11)--(86.5,13)--(91.5,13)--(91.5,11)--(91.5,13)--(90.5,11), dashed); draw((28,6)--(33,6)--(38,6)--(43,6)--(43,11)--(38,11)--(33,11)--(28,11)--(28,6), linewidth(1)); draw((28,11)--(29,13)--(34,13)--(39,13)--(44,13)--(43,11)--(44,13)--(44,8)--(43,6), linewidth(1)); draw((33,6)--(33,11)--(34,13)--(39,13)--(38,11)--(38,6), linewidth(1)); draw((31,13)--(32,15)--(37,15)--(36,13)--(37,15)--(42,15)--(41,13)--(42,15)--(42,13), linewidth(1)); draw((34.5,15)--(35.5,17)--(40.5,17)--(39.5,15)--(40.5,17)--(40.5,15), linewidth(1)); draw((53,6)--(58,6)--(63,6)--(68,6)--(68,11)--(63,11)--(58,11)--(53,11)--(53,6), dashed); draw((53,11)--(54,13)--(59,13)--(64,13)--(69,13)--(68,11)--(69,13)--(69,8)--(68,6), dashed); draw((58,6)--(58,11)--(59,13)--(64,13)--(63,11)--(63,6), dashed); draw((56,13)--(57,15)--(62,15)--(61,13)--(62,15)--(67,15)--(66,13)--(67,15)--(67,13), dashed); draw((59.5,15)--(60.5,17)--(65.5,17)--(64.5,15)--(65.5,17)--(65.5,15), dashed); draw((78,6)--(83,6)--(88,6)--(93,6)--(93,11)--(88,11)--(83,11)--(78,11)--(78,6), dashed); draw((78,11)--(79,13)--(84,13)--(89,13)--(94,13)--(93,11)--(94,13)--(94,8)--(93,6), dashed); draw((83,6)--(83,11)--(84,13)--(89,13)--(88,11)--(88,6), dashed); draw((81,13)--(82,15)--(87,15)--(86,13)--(87,15)--(92,15)--(91,13)--(92,15)--(92,13), dashed); draw((84.5,15)--(85.5,17)--(90.5,17)--(89.5,15)--(90.5,17)--(90.5,15), dashed); draw((56,12)--(61,12)--(66,12)--(66,17)--(61,17)--(56,17)--(56,12), linewidth(1)); draw((61,12)--(61,17)--(62,19)--(57,19)--(56,17)--(57,19)--(67,19)--(66,17)--(67,19)--(67,14)--(66,12), linewidth(1)); draw((59.5,19)--(60.5,21)--(65.5,21)--(64.5,19)--(65.5,21)--(65.5,19), linewidth(1)); draw((81,12)--(86,12)--(91,12)--(91,17)--(86,17)--(81,17)--(81,12), dashed); draw((86,12)--(86,17)--(87,19)--(82,19)--(81,17)--(82,19)--(92,19)--(91,17)--(92,19)--(92,14)--(91,12), dashed); draw((84.5,19)--(85.5,21)--(90.5,21)--(89.5,19)--(90.5,21)--(90.5,19), dashed); draw((84,18)--(89,18)--(89,23)--(84,23)--(84,18)--(84,23)--(85,25)--(90,25)--(89,23)--(90,25)--(90,20)--(89,18), linewidth(1));[/asy] <spanclass=latexbold>(A)</span> 55<spanclass=latexbold>(B)</span> 83<spanclass=latexbold>(C)</span> 114<spanclass=latexbold>(D)</span> 137<spanclass=latexbold>(E)</span> 144 <span class='latex-bold'>(A)</span>\ 55 \qquad<span class='latex-bold'>(B)</span>\ 83 \qquad<span class='latex-bold'>(C)</span>\ 114 \qquad<span class='latex-bold'>(D)</span>\ 137 \qquad<span class='latex-bold'>(E)</span>\ 144

1993 AMC 12 #25 - Rays and a Point

Let SS be the set of points on the rays forming the sides of a 120120^{\circ} angle, and let PP be a fixed point inside the angle on the angle bisector. Consider all distinct equilateral triangles PQRPQR with QQ and RR in SS. (Points QQ and RR may be on the same ray, and switching the names of QQ and RR does not create a distinct triangle.) There are [asy] draw((0,0)--(6,10.2), EndArrow); draw((0,0)--(6,-10.2), EndArrow); draw((0,0)--(6,0), dotted); dot((6,0)); label("P", (6,0), S); [/asy] <spanclass=latexbold>(A)</span> exactly 2 such triangles<spanclass=latexbold>(B)</span> exactly 3 such triangles<spanclass=latexbold>(C)</span> exactly 7 such triangles<spanclass=latexbold>(D)</span> exactly 15 such triangles<spanclass=latexbold>(E)</span> more than 15 such triangles <span class='latex-bold'>(A)</span>\ \text{exactly 2 such triangles} \\ \qquad<span class='latex-bold'>(B)</span>\ \text{exactly 3 such triangles} \\ \qquad<span class='latex-bold'>(C)</span>\ \text{exactly 7 such triangles} \\ \qquad<span class='latex-bold'>(D)</span>\ \text{exactly 15 such triangles} \\ \qquad<span class='latex-bold'>(E)</span>\ \text{more than 15 such triangles}

1993 AMC 12 #23 - Angles in a Circle

Points A,B,CA, B, C and DD are on a circle of diameter 11, and XX is on diameter AD\overline{AD}. If BX=CXBX=CX and 3BAC=BXC=363 \angle BAC=\angle BXC=36^{\circ}, then AX=AX= [asy] draw(Circle((0,0),10)); draw((-10,0)--(8,6)--(2,0)--(8,-6)--cycle); draw((-10,0)--(10,0)); dot((-10,0)); dot((2,0)); dot((10,0)); dot((8,6)); dot((8,-6)); label("A", (-10,0), W); label("B", (8,6), NE); label("C", (8,-6), SE); label("D", (10,0), E); label("X", (2,0), NW); [/asy] <spanclass=latexbold>(A)</span> cos6cos12sec18<spanclass=latexbold>(B)</span> cos6sin12csc18<spanclass=latexbold>(C)</span> cos6sin12sec18<spanclass=latexbold>(D)</span> sin6sin12csc18<spanclass=latexbold>(E)</span> sin6sin12sec18 <span class='latex-bold'>(A)</span>\ \cos 6^{\circ}\cos 12^{\circ} \sec 18^{\circ} \qquad<span class='latex-bold'>(B)</span>\ \cos 6^{\circ}\sin 12^{\circ} \csc 18^{\circ} \qquad<span class='latex-bold'>(C)</span>\ \cos 6^{\circ}\sin 12^{\circ} \sec 18^{\circ} \\ \qquad<span class='latex-bold'>(D)</span>\ \sin 6^{\circ}\sin 12^{\circ} \csc 18^{\circ} \qquad<span class='latex-bold'>(E)</span>\ \sin 6^{\circ} \sin 12^{\circ} \sec 18^{\circ}