MathDB
1993 AMC 12 #22 - Stack of Blocks

Source:

January 2, 2012
AMC

Problem Statement

Twenty cubical blocks are arranged as shown. First, 1010 are arranged in a triangular pattern; then a layer of 66, arranged in a triangular pattern, is centered on the 1010; then a layer of 33, arranged in a triangular pattern, is centered on the 66; and finally one block is centered on top of the third layer. The blocks in the bottom layer are numbered 11 through 1010 in some order. Each block in layers 2,32, 3 and 44 is assigned the number which is the sum of the numbers assigned to the three blocks on which it rests. Find the smallest possible number which could be assigned to the top block. [asy] size((400)); draw((0,0)--(5,0)--(5,5)--(0,5)--(0,0), linewidth(1)); draw((5,0)--(10,0)--(15,0)--(20,0)--(20,5)--(15,5)--(10,5)--(5,5)--(6,7)--(11,7)--(16,7)--(21,7)--(21,2)--(20,0), linewidth(1)); draw((10,0)--(10,5)--(11,7), linewidth(1)); draw((15,0)--(15,5)--(16,7), linewidth(1)); draw((20,0)--(20,5)--(21,7), linewidth(1)); draw((0,5)--(1,7)--(6,7), linewidth(1)); draw((3.5,7)--(4.5,9)--(9.5,9)--(14.5,9)--(19.5,9)--(18.5,7)--(19.5,9)--(19.5,7), linewidth(1)); draw((8.5,7)--(9.5,9), linewidth(1)); draw((13.5,7)--(14.5,9), linewidth(1)); draw((7,9)--(8,11)--(13,11)--(18,11)--(17,9)--(18,11)--(18,9), linewidth(1)); draw((12,9)--(13,11), linewidth(1)); draw((10.5,11)--(11.5,13)--(16.5,13)--(16.5,11)--(16.5,13)--(15.5,11), linewidth(1)); draw((25,0)--(30,0)--(30,5)--(25,5)--(25,0), dashed); draw((30,0)--(35,0)--(40,0)--(45,0)--(45,5)--(40,5)--(35,5)--(30,5)--(31,7)--(36,7)--(41,7)--(46,7)--(46,2)--(45,0), dashed); draw((35,0)--(35,5)--(36,7), dashed); draw((40,0)--(40,5)--(41,7), dashed); draw((45,0)--(45,5)--(46,7), dashed); draw((25,5)--(26,7)--(31,7), dashed); draw((28.5,7)--(29.5,9)--(34.5,9)--(39.5,9)--(44.5,9)--(43.5,7)--(44.5,9)--(44.5,7), dashed); draw((33.5,7)--(34.5,9), dashed); draw((38.5,7)--(39.5,9), dashed); draw((32,9)--(33,11)--(38,11)--(43,11)--(42,9)--(43,11)--(43,9), dashed); draw((37,9)--(38,11), dashed); draw((35.5,11)--(36.5,13)--(41.5,13)--(41.5,11)--(41.5,13)--(40.5,11), dashed); draw((50,0)--(55,0)--(55,5)--(50,5)--(50,0), dashed); draw((55,0)--(60,0)--(65,0)--(70,0)--(70,5)--(65,5)--(60,5)--(55,5)--(56,7)--(61,7)--(66,7)--(71,7)--(71,2)--(70,0), dashed); draw((60,0)--(60,5)--(61,7), dashed); draw((65,0)--(65,5)--(66,7), dashed); draw((70,0)--(70,5)--(71,7), dashed); draw((50,5)--(51,7)--(56,7), dashed); draw((53.5,7)--(54.5,9)--(59.5,9)--(64.5,9)--(69.5,9)--(68.5,7)--(69.5,9)--(69.5,7), dashed); draw((58.5,7)--(59.5,9), dashed); draw((63.5,7)--(64.5,9), dashed); draw((57,9)--(58,11)--(63,11)--(68,11)--(67,9)--(68,11)--(68,9), dashed); draw((62,9)--(63,11), dashed); draw((60.5,11)--(61.5,13)--(66.5,13)--(66.5,11)--(66.5,13)--(65.5,11), dashed); draw((75,0)--(80,0)--(80,5)--(75,5)--(75,0), dashed); draw((80,0)--(85,0)--(90,0)--(95,0)--(95,5)--(90,5)--(85,5)--(80,5)--(81,7)--(86,7)--(91,7)--(96,7)--(96,2)--(95,0), dashed); draw((85,0)--(85,5)--(86,7), dashed); draw((90,0)--(90,5)--(91,7), dashed); draw((95,0)--(95,5)--(96,7), dashed); draw((75,5)--(76,7)--(81,7), dashed); draw((78.5,7)--(79.5,9)--(84.5,9)--(89.5,9)--(94.5,9)--(93.5,7)--(94.5,9)--(94.5,7), dashed); draw((83.5,7)--(84.5,9), dashed); draw((88.5,7)--(89.5,9), dashed); draw((82,9)--(83,11)--(88,11)--(93,11)--(92,9)--(93,11)--(93,9), dashed); draw((87,9)--(88,11), dashed); draw((85.5,11)--(86.5,13)--(91.5,13)--(91.5,11)--(91.5,13)--(90.5,11), dashed); draw((28,6)--(33,6)--(38,6)--(43,6)--(43,11)--(38,11)--(33,11)--(28,11)--(28,6), linewidth(1)); draw((28,11)--(29,13)--(34,13)--(39,13)--(44,13)--(43,11)--(44,13)--(44,8)--(43,6), linewidth(1)); draw((33,6)--(33,11)--(34,13)--(39,13)--(38,11)--(38,6), linewidth(1)); draw((31,13)--(32,15)--(37,15)--(36,13)--(37,15)--(42,15)--(41,13)--(42,15)--(42,13), linewidth(1)); draw((34.5,15)--(35.5,17)--(40.5,17)--(39.5,15)--(40.5,17)--(40.5,15), linewidth(1)); draw((53,6)--(58,6)--(63,6)--(68,6)--(68,11)--(63,11)--(58,11)--(53,11)--(53,6), dashed); draw((53,11)--(54,13)--(59,13)--(64,13)--(69,13)--(68,11)--(69,13)--(69,8)--(68,6), dashed); draw((58,6)--(58,11)--(59,13)--(64,13)--(63,11)--(63,6), dashed); draw((56,13)--(57,15)--(62,15)--(61,13)--(62,15)--(67,15)--(66,13)--(67,15)--(67,13), dashed); draw((59.5,15)--(60.5,17)--(65.5,17)--(64.5,15)--(65.5,17)--(65.5,15), dashed); draw((78,6)--(83,6)--(88,6)--(93,6)--(93,11)--(88,11)--(83,11)--(78,11)--(78,6), dashed); draw((78,11)--(79,13)--(84,13)--(89,13)--(94,13)--(93,11)--(94,13)--(94,8)--(93,6), dashed); draw((83,6)--(83,11)--(84,13)--(89,13)--(88,11)--(88,6), dashed); draw((81,13)--(82,15)--(87,15)--(86,13)--(87,15)--(92,15)--(91,13)--(92,15)--(92,13), dashed); draw((84.5,15)--(85.5,17)--(90.5,17)--(89.5,15)--(90.5,17)--(90.5,15), dashed); draw((56,12)--(61,12)--(66,12)--(66,17)--(61,17)--(56,17)--(56,12), linewidth(1)); draw((61,12)--(61,17)--(62,19)--(57,19)--(56,17)--(57,19)--(67,19)--(66,17)--(67,19)--(67,14)--(66,12), linewidth(1)); draw((59.5,19)--(60.5,21)--(65.5,21)--(64.5,19)--(65.5,21)--(65.5,19), linewidth(1)); draw((81,12)--(86,12)--(91,12)--(91,17)--(86,17)--(81,17)--(81,12), dashed); draw((86,12)--(86,17)--(87,19)--(82,19)--(81,17)--(82,19)--(92,19)--(91,17)--(92,19)--(92,14)--(91,12), dashed); draw((84.5,19)--(85.5,21)--(90.5,21)--(89.5,19)--(90.5,21)--(90.5,19), dashed); draw((84,18)--(89,18)--(89,23)--(84,23)--(84,18)--(84,23)--(85,25)--(90,25)--(89,23)--(90,25)--(90,20)--(89,18), linewidth(1));[/asy] <spanclass=latexbold>(A)</span> 55<spanclass=latexbold>(B)</span> 83<spanclass=latexbold>(C)</span> 114<spanclass=latexbold>(D)</span> 137<spanclass=latexbold>(E)</span> 144 <span class='latex-bold'>(A)</span>\ 55 \qquad<span class='latex-bold'>(B)</span>\ 83 \qquad<span class='latex-bold'>(C)</span>\ 114 \qquad<span class='latex-bold'>(D)</span>\ 137 \qquad<span class='latex-bold'>(E)</span>\ 144