MathDB
1993 AMC 12 #10 - Value of x

Source:

January 2, 2012
AMC

Problem Statement

Let rr be the number that results when both the base and the exponent of aba^b are tripled, where a,b>0a, b>0. If rr equals the product of aba^b and xbx^b where x>0x>0, then x=x=
<spanclass=latexbold>(A)</span> 3<spanclass=latexbold>(B)</span> 3a2<spanclass=latexbold>(C)</span> 27a2<spanclass=latexbold>(D)</span> 2a3b<spanclass=latexbold>(E)</span> 3a2b <span class='latex-bold'>(A)</span>\ 3 \qquad<span class='latex-bold'>(B)</span>\ 3a^2 \qquad<span class='latex-bold'>(C)</span>\ 27a^2 \qquad<span class='latex-bold'>(D)</span>\ 2a^{3b} \qquad<span class='latex-bold'>(E)</span>\ 3a^{2b}