MathDB

1986 AMC 12/AHSME

Part of AMC 12/AHSME

Subcontests

(30)

Pentagon Geometry

ABCDEABCDE is a regular pentagon. APAP, AQAQ and ARAR are the perpendiculars dropped from AA onto CDCD, CBCB extended and DEDE extended, respectively. Let OO be the center of the pentagon. If OP=1OP = 1, then AO+AQ+ARAO + AQ + AR equals
[asy] size(200); defaultpen(fontsize(10pt)+linewidth(.8pt)); pair O=origin, A=2*dir(90), B=2*dir(18), C=2*dir(306), D=2*dir(234), E=2*dir(162), P=(C+D)/2, Q=C+3.10*dir(C--B), R=D+3.10*dir(D--E), S=C+4.0*dir(C--B), T=D+4.0*dir(D--E); draw(A--B--C--D--E--A^^E--T^^B--S^^R--A--Q^^A--P^^rightanglemark(A,Q,S,7)^^rightanglemark(A,R,T,7)); dot(O); label("OO",O,dir(B)); label("11",(O+P)/2,W); label("AA",A,dir(A)); label("BB",B,dir(B)); label("CC",C,dir(C)); label("DD",D,dir(D)); label("EE",E,dir(E)); label("PP",P,dir(P)); label("QQ",Q,dir(Q-A)); label("RR",R,dir(R-A)); [/asy]
<spanclass=latexbold>(A)</span> 3<spanclass=latexbold>(B)</span> 1+5<spanclass=latexbold>(C)</span> 4<spanclass=latexbold>(D)</span> 2+5<spanclass=latexbold>(E)</span> 5 <span class='latex-bold'>(A)</span>\ 3\qquad<span class='latex-bold'>(B)</span>\ 1 + \sqrt{5}\qquad<span class='latex-bold'>(C)</span>\ 4\qquad<span class='latex-bold'>(D)</span>\ 2 + \sqrt{5}\qquad<span class='latex-bold'>(E)</span>\ 5

Trigonometry

In the configuration below, θ\theta is measured in radians, CC is the center of the circle, BCDBCD and ACEACE are line segments and ABAB is tangent to the circle at AA.
[asy] defaultpen(fontsize(10pt)+linewidth(.8pt)); pair A=(0,-1), E=(0,1), C=(0,0), D=dir(10), F=dir(190), B=(-1/sin(10*pi/180))*dir(10); fill(Arc((0,0),1,10,90)--C--D--cycle,mediumgray); fill(Arc((0,0),1,190,270)--B--F--cycle,mediumgray); draw(unitcircle); draw(A--B--D^^A--E); label("AA",A,S); label("BB",B,W); label("CC",C,SE); label("θ\theta",C,SW); label("DD",D,NE); label("EE",E,N); [/asy]
A necessary and sufficient condition for the equality of the two shaded areas, given 0<θ<π20 < \theta < \frac{\pi}{2}, is
<spanclass=latexbold>(A)</span> tanθ=θ<spanclass=latexbold>(B)</span> tanθ=2θ<spanclass=latexbold>(C)</span> tanθ=4θ<spanclass=latexbold>(D)</span> tan2θ=θ<spanclass=latexbold>(E)</span> tanθ2=θ <span class='latex-bold'>(A)</span>\ \tan \theta = \theta\qquad<span class='latex-bold'>(B)</span>\ \tan \theta = 2\theta\qquad<span class='latex-bold'>(C)</span>\ \tan \theta = 4\theta\qquad<span class='latex-bold'>(D)</span>\ \tan 2\theta = \theta\qquad \\ <span class='latex-bold'>(E)</span>\ \tan \frac{\theta}{2} = \theta
6
1

Two Identical Blocks of Wood

Using a table of a certain height, two identical blocks of wood are placed as shown in Figure 1. Length rr is found to be 3232 inches. After rearranging the blocks as in Figure 2, length ss is found to be 2828 inches. How high is the table?
[asy] size(300); defaultpen(linewidth(0.8)+fontsize(13pt)); path table = origin--(1,0)--(1,6)--(6,6)--(6,0)--(7,0)--(7,7)--(0,7)--cycle; path block = origin--(3,0)--(3,1.5)--(0,1.5)--cycle; path rotblock = origin--(1.5,0)--(1.5,3)--(0,3)--cycle; draw(table^^shift((14,0))*table); filldraw(shift((7,0))*block^^shift((5.5,7))*rotblock^^shift((21,0))*rotblock^^shift((18,7))*block,gray); draw((7.25,1.75)--(8.5,3.5)--(8.5,8)--(7.25,9.75),Arrows(size=5)); draw((21.25,3.25)--(22,3.5)--(22,8)--(21.25,8.25),Arrows(size=5)); unfill((8,5)--(8,6.5)--(9,6.5)--(9,5)--cycle); unfill((21.5,5)--(21.5,6.5)--(23,6.5)--(23,5)--cycle); label("rr",(8.5,5.75)); label("ss",(22,5.75)); [/asy]
<spanclass=latexbold>(A)</span>28 inches<spanclass=latexbold>(B)</span>29 inches<spanclass=latexbold>(C)</span>30 inches<spanclass=latexbold>(D)</span>31 inches<spanclass=latexbold>(E)</span>32 inches<span class='latex-bold'>(A) </span>28\text{ inches}\qquad<span class='latex-bold'>(B) </span>29\text{ inches}\qquad<span class='latex-bold'>(C) </span>30\text{ inches}\qquad<span class='latex-bold'>(D) </span>31\text{ inches}\qquad<span class='latex-bold'>(E) </span>32\text{ inches}