MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1986 AMC 12/AHSME
28
28
Part of
1986 AMC 12/AHSME
Problems
(1)
Pentagon Geometry
Source: AHSME 1986 problem 28
10/2/2011
A
B
C
D
E
ABCDE
A
BC
D
E
is a regular pentagon.
A
P
AP
A
P
,
A
Q
AQ
A
Q
and
A
R
AR
A
R
are the perpendiculars dropped from
A
A
A
onto
C
D
CD
C
D
,
C
B
CB
CB
extended and
D
E
DE
D
E
extended, respectively. Let
O
O
O
be the center of the pentagon. If
O
P
=
1
OP = 1
OP
=
1
, then
A
O
+
A
Q
+
A
R
AO + AQ + AR
A
O
+
A
Q
+
A
R
equals[asy] size(200); defaultpen(fontsize(10pt)+linewidth(.8pt)); pair O=origin, A=2*dir(90), B=2*dir(18), C=2*dir(306), D=2*dir(234), E=2*dir(162), P=(C+D)/2, Q=C+3.10*dir(C--B), R=D+3.10*dir(D--E), S=C+4.0*dir(C--B), T=D+4.0*dir(D--E); draw(A--B--C--D--E--A^^E--T^^B--S^^R--A--Q^^A--P^^rightanglemark(A,Q,S,7)^^rightanglemark(A,R,T,7)); dot(O); label("
O
O
O
",O,dir(B)); label("
1
1
1
",(O+P)/2,W); label("
A
A
A
",A,dir(A)); label("
B
B
B
",B,dir(B)); label("
C
C
C
",C,dir(C)); label("
D
D
D
",D,dir(D)); label("
E
E
E
",E,dir(E)); label("
P
P
P
",P,dir(P)); label("
Q
Q
Q
",Q,dir(Q-A)); label("
R
R
R
",R,dir(R-A)); [/asy]
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
3
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
1
+
5
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
4
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
2
+
5
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
5
<span class='latex-bold'>(A)</span>\ 3\qquad<span class='latex-bold'>(B)</span>\ 1 + \sqrt{5}\qquad<span class='latex-bold'>(C)</span>\ 4\qquad<span class='latex-bold'>(D)</span>\ 2 + \sqrt{5}\qquad<span class='latex-bold'>(E)</span>\ 5
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
1
+
5
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
4
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
2
+
5
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
5
geometry
AMC