MathDB
Ratio of areas

Source: AHSME 1986 problem 27

October 2, 2011
ratiogeometrytrigonometryAMC

Problem Statement

In the adjoining figure, ABAB is a diameter of the circle, CDCD is a chord parallel to ABAB, and ACAC intersects BDBD at EE, with AED=α\angle AED = \alpha. The ratio of the area of CDE\triangle CDE to that of ABE\triangle ABE is
[asy] size(200); defaultpen(fontsize(10pt)+linewidth(.8pt)); pair A=(-1,0), B=(1,0), E=(0,-.4), C=(.6,-.8), D=(-.6,-.8), E=(0,-.8/(1.6)); draw(unitcircle); draw(A--B--D--C--A); draw(Arc(E,.2,155,205)); label("AA",A,W); label("BB",B,C); label("CC",C,C); label("DD",D,W); label("α\alpha",E-(.2,0),W); label("EE",E,N);[/asy]
<spanclass=latexbold>(A)</span> cos α<spanclass=latexbold>(B)</span> sin α<spanclass=latexbold>(C)</span> cos2α<spanclass=latexbold>(D)</span> sin2α<spanclass=latexbold>(E)</span> 1sin α <span class='latex-bold'>(A)</span>\ \cos\ \alpha\qquad<span class='latex-bold'>(B)</span>\ \sin\ \alpha\qquad<span class='latex-bold'>(C)</span>\ \cos^2\alpha\qquad<span class='latex-bold'>(D)</span>\ \sin^2\alpha\qquad<span class='latex-bold'>(E)</span>\ 1 - \sin\ \alpha