MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1986 AMC 12/AHSME
3
3
Part of
1986 AMC 12/AHSME
Problems
(1)
Easy chapter level geometry
Source:
10/26/2005
△
A
B
C
\triangle ABC
△
A
BC
is a right angle at
C
C
C
and
∠
A
=
2
0
∘
\angle A = 20^\circ
∠
A
=
2
0
∘
. If
B
D
BD
B
D
is the bisector of
∠
A
B
C
\angle ABC
∠
A
BC
, then
∠
B
D
C
=
\angle BDC =
∠
B
D
C
=
[asy] size(200); defaultpen(linewidth(0.8)+fontsize(11pt)); pair A= origin, B = 3 * dir(25), C = (B.x,0); pair X = bisectorpoint(A,B,C), D = extension(B,X,A,C); draw(B--A--C--B--D^^rightanglemark(A,C,B,4)); path g = anglemark(A,B,D,14); path h = anglemark(D,B,C,14); draw(g); draw(h); add(pathticks(g,1,0.11,6,6)); add(pathticks(h,1,0.11,6,6)); label("
A
A
A
",A,W); label("
B
B
B
",B,NE); label("
C
C
C
",C,E); label("
D
D
D
",D,S); label("
2
0
∘
20^\circ
2
0
∘
",A,8*dir(12.5)); [/asy]
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
4
0
∘
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
4
5
∘
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
5
0
∘
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
5
5
∘
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
6
0
∘
<span class='latex-bold'>(A)</span>\ 40^\circ \qquad <span class='latex-bold'>(B)</span>\ 45^\circ \qquad <span class='latex-bold'>(C)</span>\ 50^\circ \qquad <span class='latex-bold'>(D)</span>\ 55^\circ \qquad <span class='latex-bold'>(E)</span>\ 60^\circ
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
4
0
∘
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
4
5
∘
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
5
0
∘
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
5
5
∘
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
6
0
∘
geometry
LaTeX