MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1986 AMC 12/AHSME
21
21
Part of
1986 AMC 12/AHSME
Problems
(1)
Trigonometry
Source: AHSME 1986 problem 21
10/1/2011
In the configuration below,
θ
\theta
θ
is measured in radians,
C
C
C
is the center of the circle,
B
C
D
BCD
BC
D
and
A
C
E
ACE
A
CE
are line segments and
A
B
AB
A
B
is tangent to the circle at
A
A
A
.[asy] defaultpen(fontsize(10pt)+linewidth(.8pt)); pair A=(0,-1), E=(0,1), C=(0,0), D=dir(10), F=dir(190), B=(-1/sin(10*pi/180))*dir(10); fill(Arc((0,0),1,10,90)--C--D--cycle,mediumgray); fill(Arc((0,0),1,190,270)--B--F--cycle,mediumgray); draw(unitcircle); draw(A--B--D^^A--E); label("
A
A
A
",A,S); label("
B
B
B
",B,W); label("
C
C
C
",C,SE); label("
θ
\theta
θ
",C,SW); label("
D
D
D
",D,NE); label("
E
E
E
",E,N); [/asy]A necessary and sufficient condition for the equality of the two shaded areas, given
0
<
θ
<
π
2
0 < \theta < \frac{\pi}{2}
0
<
θ
<
2
π
, is
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
tan
θ
=
θ
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
tan
θ
=
2
θ
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
tan
θ
=
4
θ
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
tan
2
θ
=
θ
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
tan
θ
2
=
θ
<span class='latex-bold'>(A)</span>\ \tan \theta = \theta\qquad<span class='latex-bold'>(B)</span>\ \tan \theta = 2\theta\qquad<span class='latex-bold'>(C)</span>\ \tan \theta = 4\theta\qquad<span class='latex-bold'>(D)</span>\ \tan 2\theta = \theta\qquad \\ <span class='latex-bold'>(E)</span>\ \tan \frac{\theta}{2} = \theta
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
tan
θ
=
θ
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
tan
θ
=
2
θ
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
tan
θ
=
4
θ
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
tan
2
θ
=
θ
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
tan
2
θ
=
θ
trigonometry
geometry
AMC