MathDB

2022 AMC 10

Part of AMC 10

Subcontests

(25)

sussy baka stop intersecting in my lattice points

Let RR, SS, and TT be squares that have vertices at lattice points (i.e., points whose coordinates are both integers) in the coordinate plane, together with their interiors. The bottom edge of each square is on the x-axis. The left edge of RR and the right edge of SS are on the yy-axis, and RR contains 94\frac{9}{4} as many lattice points as does SS. The top two vertices of TT are in RSR \cup S, and TT contains 14\frac{1}{4} of the lattice points contained in RSR \cup S. See the figure (not drawn to scale).
[asy] //kaaaaaaaaaante314 size(8cm); import olympiad; label(scale(.8)*"yy", (0,60), N); label(scale(.8)*"xx", (60,0), E); filldraw((0,0)--(55,0)--(55,55)--(0,55)--cycle, yellow+orange+white+white); label(scale(1.3)*"RR", (55/2,55/2)); filldraw((0,0)--(0,28)--(-28,28)--(-28,0)--cycle, green+white+white); label(scale(1.3)*"SS",(-14,14)); filldraw((-10,0)--(15,0)--(15,25)--(-10,25)--cycle, red+white+white); label(scale(1.3)*"TT",(3.5,25/2)); draw((0,-10)--(0,60),EndArrow(TeXHead)); draw((-34,0)--(60,0),EndArrow(TeXHead));[/asy]
The fraction of lattice points in SS that are in STS \cap T is 27 times the fraction of lattice points in RR that are in RTR \cap T. What is the minimum possible value of the edge length of RR plus the edge length of SS plus the edge length of TT?
<spanclass=latexbold>(A)</span>336<spanclass=latexbold>(B)</span>337<spanclass=latexbold>(C)</span>338<spanclass=latexbold>(D)</span>339<spanclass=latexbold>(E)</span>340<span class='latex-bold'>(A) </span>336\qquad<span class='latex-bold'>(B) </span>337\qquad<span class='latex-bold'>(C) </span>338\qquad<span class='latex-bold'>(D) </span>339\qquad<span class='latex-bold'>(E) </span>340

Index Cards :D

Daniel finds a rectangular index card and measures its diagonal to be 8 centimeters. Daniel then cuts out equal squares of side 1 cm at two opposite corners of the index card and measures the distance between the two closest vertices of these squares to be 424\sqrt{2} centimeters, as shown below. What is the area of the original index card?
[asy] unitsize(0.6 cm);
pair A, B, C, D, E, F, G, H; real x, y; x = 9; y = 5;
A = (0,y); B = (x - 1,y); C = (x - 1,y - 1); D = (x,y - 1); E = (x,0); F = (1,0); G = (1,1); H = (0,1);
draw(A--B--C--D--E--F--G--H--cycle); draw(interp(C,G,0.03)--interp(C,G,0.97), dashed, Arrows(6)); draw(interp(A,E,0.03)--interp(A,E,0.97), dashed, Arrows(6));
label("11", (B + C)/2, W); label("11", (C + D)/2, S); label("88", interp(A,E,0.3), NE); label("424 \sqrt{2}", interp(G,C,0.2), SE); [/asy]
<spanclass=latexbold>(A)</span>14<spanclass=latexbold>(B)</span>102<spanclass=latexbold>(C)</span>16<spanclass=latexbold>(D)</span>122<spanclass=latexbold>(E)</span>18<span class='latex-bold'>(A) </span>14\qquad<span class='latex-bold'>(B) </span>10\sqrt{2}\qquad<span class='latex-bold'>(C) </span>16\qquad<span class='latex-bold'>(D) </span>12\sqrt{2}\qquad<span class='latex-bold'>(E) </span>18
8
2
9
2
7
2

Card Games

Suppose that 13 cards numbered 1,2,3,,131, 2, 3, \dots, 13 are arranged in a row. The task is to pick them up in numerically increasing order, working repeatedly from left to right. In the example below, cards 1, 2, 3 are picked up on the first pass, 4 and 5 on the second pass, 6 on the third pass, 7, 8, 9, 10 on the fourth pass, and 11, 12, 13 on the fifth pass. For how many of the 13!13! possible orderings of the cards will the 1313 cards be picked up in exactly two passes?
[asy] size(11cm); draw((0,0)--(2,0)--(2,3)--(0,3)--cycle); label("7", (1,1.5)); draw((3,0)--(5,0)--(5,3)--(3,3)--cycle); label("11", (4,1.5)); draw((6,0)--(8,0)--(8,3)--(6,3)--cycle); label("8", (7,1.5)); draw((9,0)--(11,0)--(11,3)--(9,3)--cycle); label("6", (10,1.5)); draw((12,0)--(14,0)--(14,3)--(12,3)--cycle); label("4", (13,1.5)); draw((15,0)--(17,0)--(17,3)--(15,3)--cycle); label("5", (16,1.5)); draw((18,0)--(20,0)--(20,3)--(18,3)--cycle); label("9", (19,1.5)); draw((21,0)--(23,0)--(23,3)--(21,3)--cycle); label("12", (22,1.5)); draw((24,0)--(26,0)--(26,3)--(24,3)--cycle); label("1", (25,1.5)); draw((27,0)--(29,0)--(29,3)--(27,3)--cycle); label("13", (28,1.5)); draw((30,0)--(32,0)--(32,3)--(30,3)--cycle); label("10", (31,1.5)); draw((33,0)--(35,0)--(35,3)--(33,3)--cycle); label("2", (34,1.5)); draw((36,0)--(38,0)--(38,3)--(36,3)--cycle); label("3", (37,1.5)); [/asy]
<spanclass=latexbold>(A)</span>4082<spanclass=latexbold>(B)</span>4095<spanclass=latexbold>(C)</span>4096<spanclass=latexbold>(D)</span>8178<spanclass=latexbold>(E)</span>8191<span class='latex-bold'>(A) </span>4082\qquad<span class='latex-bold'>(B) </span>4095\qquad<span class='latex-bold'>(C) </span>4096\qquad<span class='latex-bold'>(D) </span>8178\qquad<span class='latex-bold'>(E) </span>8191
6
2
5
2

Diagrams and 3D Geo

A bowl is formed by attaching four regular hexagons of side 1 to a square of side 1. The edges of adjacent hexagons coincide, as shown in the figure. What is the area of the octagon obtained by joining the top eight vertices of the four hexagons, situated on the rim of the bowl?
[asy] size(200); defaultpen(linewidth(0.8)); draw((342,-662) -- (600, -727) -- (757,-619) -- (967,-400) -- (1016,-300) -- (912,-116) -- (651,-46) -- (238,-90) -- (82,-204) -- (184, -388) -- (447,-458) -- (859,-410) -- (1016,-300)); draw((82,-204) -- (133,-490) -- (342, -662)); draw((652,-626) -- (600,-727)); draw((447,-458) -- (652,-626) -- (859,-410)); draw((133,-490) -- (184, -388)); draw((967,-400) -- (912,-116)^^(342,-662) -- (496, -545) -- (757,-619)^^(496, -545) -- (446, -262) -- (238, -90)^^(446, -262) -- (651, -46),linewidth(0.6)+linetype("5 5")+gray(0.4)); [/asy]
<spanclass=latexbold>(A)</span>6<spanclass=latexbold>(B)</span>7<spanclass=latexbold>(C)</span>5+22<spanclass=latexbold>(D)</span>8<spanclass=latexbold>(E)</span>9<span class='latex-bold'>(A) </span>6\qquad<span class='latex-bold'>(B) </span>7\qquad<span class='latex-bold'>(C) </span>5+2\sqrt{2}\qquad<span class='latex-bold'>(D) </span>8\qquad<span class='latex-bold'>(E) </span>9
4
2

MAA is cruel

Each square in a 5×55 \times 5 grid is either filled or empty, and has up to eight adjacent neighboring squares, where neighboring squares share either a side or a corner. The grid is transformed by the following rules:
[*] Any filled square with two or three filled neighbors remains filled. [*] Any empty square with exactly three filled neighbors becomes a filled square. [*] All other squares remain empty or become empty.
A sample transformation is shown in the figure below.
[asy] import geometry; unitsize(0.6cm);
void ds(pair x) { filldraw(x -- (1,0) + x -- (1,1) + x -- (0,1)+x -- cycle,gray+opacity(0.5),invisible); }
ds((1,1)); ds((2,1)); ds((3,1)); ds((1,3));
for (int i = 0; i <= 5; ++i) { draw((0,i)--(5,i)); draw((i,0)--(i,5)); }
label("Initial", (2.5,-1)); draw((6,2.5)--(8,2.5),Arrow);
ds((10,2)); ds((11,1)); ds((11,0));
for (int i = 0; i <= 5; ++i) { draw((9,i)--(14,i)); draw((i+9,0)--(i+9,5)); }
label("Transformed", (11.5,-1)); [/asy]
Suppose the 5×55 \times 5 grid has a border of empty squares surrounding a 3×33 \times 3 subgrid. How many initial configurations will lead to a transformed grid consisting of a single filled square in the center after a single transformation? (Rotations and reflections of the same configuration are considered different.) [asy] import geometry; unitsize(0.6cm);
void ds(pair x) { filldraw(x -- (1,0) + x -- (1,1) + x -- (0,1)+x -- cycle,gray+opacity(0.5),invisible); }
for (int i = 1; i < 4; ++ i) { for (int j = 1; j < 4; ++j) { label("?",(i + 0.5, j + 0.5)); } }
for (int i = 0; i <= 5; ++i) { draw((0,i)--(5,i)); draw((i,0)--(i,5)); }
label("Initial", (2.5,-1)); draw((6,2.5)--(8,2.5),Arrow);
ds((11,2));
for (int i = 0; i <= 5; ++i) { draw((9,i)--(14,i)); draw((i+9,0)--(i+9,5)); }
label("Transformed", (11.5,-1)); [/asy]
<spanclass=latexbold>(A)14</span> <spanclass=latexbold>(B)18</span> <spanclass=latexbold>(C)22</span> <spanclass=latexbold>(D)26</span> <spanclass=latexbold>(E)30</span><span class='latex-bold'>(A) 14</span>~<span class='latex-bold'>(B) 18</span>~<span class='latex-bold'>(C) 22</span>~<span class='latex-bold'>(D) 26</span>~<span class='latex-bold'>(E) 30</span>
3
2
2
2
1
2