MathDB

19

Part of 2022 AMC 10

Problems(2)

When u take an L

Source: AMC 10A Problem 19

11/11/2022
Define LnL_n as the least common multiple of all the integers from 11 to nn inclusive. There is a unique integer hh such that 11+12+13+117=hL17\frac{1}{1}+\frac{1}{2}+\frac{1}{3} \ldots +\frac{1}{17}=\frac{h}{L_{17}}. What is the remainder when hh is divided by 17?17?
<spanclass=latexbold>(A)</span>1<spanclass=latexbold>(B)</span>3<spanclass=latexbold>(C)</span>5<spanclass=latexbold>(D)</span>7<spanclass=latexbold>(E)</span>9<span class='latex-bold'>(A) </span> 1 \qquad <span class='latex-bold'>(B) </span> 3 \qquad <span class='latex-bold'>(C) </span> 5 \qquad <span class='latex-bold'>(D) </span> 7 \qquad <span class='latex-bold'>(E) </span> 9
AMCAMC 10AMC 10 A2022 AMC 10a2022 AMCleast common multiple
MAA is cruel

Source: 2022 AMC 12B #18/2022 AMC 10B #19

11/17/2022
Each square in a 5×55 \times 5 grid is either filled or empty, and has up to eight adjacent neighboring squares, where neighboring squares share either a side or a corner. The grid is transformed by the following rules:
[*] Any filled square with two or three filled neighbors remains filled. [*] Any empty square with exactly three filled neighbors becomes a filled square. [*] All other squares remain empty or become empty.
A sample transformation is shown in the figure below.
[asy] import geometry; unitsize(0.6cm);
void ds(pair x) { filldraw(x -- (1,0) + x -- (1,1) + x -- (0,1)+x -- cycle,gray+opacity(0.5),invisible); }
ds((1,1)); ds((2,1)); ds((3,1)); ds((1,3));
for (int i = 0; i <= 5; ++i) { draw((0,i)--(5,i)); draw((i,0)--(i,5)); }
label("Initial", (2.5,-1)); draw((6,2.5)--(8,2.5),Arrow);
ds((10,2)); ds((11,1)); ds((11,0));
for (int i = 0; i <= 5; ++i) { draw((9,i)--(14,i)); draw((i+9,0)--(i+9,5)); }
label("Transformed", (11.5,-1)); [/asy]
Suppose the 5×55 \times 5 grid has a border of empty squares surrounding a 3×33 \times 3 subgrid. How many initial configurations will lead to a transformed grid consisting of a single filled square in the center after a single transformation? (Rotations and reflections of the same configuration are considered different.) [asy] import geometry; unitsize(0.6cm);
void ds(pair x) { filldraw(x -- (1,0) + x -- (1,1) + x -- (0,1)+x -- cycle,gray+opacity(0.5),invisible); }
for (int i = 1; i < 4; ++ i) { for (int j = 1; j < 4; ++j) { label("?",(i + 0.5, j + 0.5)); } }
for (int i = 0; i <= 5; ++i) { draw((0,i)--(5,i)); draw((i,0)--(i,5)); }
label("Initial", (2.5,-1)); draw((6,2.5)--(8,2.5),Arrow);
ds((11,2));
for (int i = 0; i <= 5; ++i) { draw((9,i)--(14,i)); draw((i+9,0)--(i+9,5)); }
label("Transformed", (11.5,-1)); [/asy]
<spanclass=latexbold>(A)14</span> <spanclass=latexbold>(B)18</span> <spanclass=latexbold>(C)22</span> <spanclass=latexbold>(D)26</span> <spanclass=latexbold>(E)30</span><span class='latex-bold'>(A) 14</span>~<span class='latex-bold'>(B) 18</span>~<span class='latex-bold'>(C) 22</span>~<span class='latex-bold'>(D) 26</span>~<span class='latex-bold'>(E) 30</span>
AMCAMC 12AMC 102022 AMC2022 AMC 10B2022 AMC 12Bcounting