MathDB

17

Part of 2022 AMC 10

Problems(2)

Repeating Decimals Timesink

Source: 2022 AMC 10A #17

11/11/2022
How many three-digit positive integers a\underline{a} b\underline{b} c\underline{c} are there whose nonzero digits aa, bb, and cc satisfy
0.a b c=13(0.a+0.b+0.c)?0.\overline{\underline{a}~\underline{b}~\underline{c}} = \frac{1}{3} (0.\overline{a} + 0.\overline{b} + 0.\overline{c})? (The bar indicates repetition, thus 0.a b c0.\overline{\underline{a}~\underline{b}~\underline{c}} in the infinite repeating decimal 0.a b c a b c 0.\underline{a}~\underline{b}~\underline{c}~\underline{a}~\underline{b}~\underline{c}~\cdots)
<spanclass=latexbold>(A)</span>9<spanclass=latexbold>(B)</span>10<spanclass=latexbold>(C)</span>11<spanclass=latexbold>(D)</span>13<spanclass=latexbold>(E)</span>14<span class='latex-bold'>(A) </span>9\qquad<span class='latex-bold'>(B) </span>10\qquad<span class='latex-bold'>(C) </span>11\qquad<span class='latex-bold'>(D) </span>13\qquad<span class='latex-bold'>(E) </span>14
AMCAMC 102022 AMC 10a2022 AMCnumber theory
AMC12B #15/10B #17

Source: 2022 AMC 10B #17 / 2022 AMC 12B #15

11/17/2022
One of the following numbers is not divisible by any prime number less than 10. Which is it? (A) 26061  2^{606} - 1 \ \ (B) 2606+1  2^{606} + 1 \ \ (C) 26071  2^{607} - 1 \ \ (D) 2607+1  2^{607} + 1 \ \ (E) 2607+3607  2^{607} + 3^{607} \ \
AMCAMC 122022 AMC 10B2022 AMC 12B2022 AMCAMC 10