MathDB
nice telescoping series

Source: 2022 AMC 10B #9

November 17, 2022
AMCAMC 102022 AMC2022 AMC 10B

Problem Statement

The sum 12!+23!+34!++20212022!\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\dots+\frac{2021}{2022!} can be expressed as a1b!a-\frac{1}{b!}, where aa and bb are positive integers. What is a+ba+b?
<spanclass=latexbold>(A)</span> 2020<spanclass=latexbold>(B)</span> 2021<spanclass=latexbold>(C)</span> 2022<spanclass=latexbold>(D)</span> 2023<spanclass=latexbold>(E)</span> 2024 <span class='latex-bold'>(A)</span>\ 2020 \qquad<span class='latex-bold'>(B)</span>\ 2021 \qquad<span class='latex-bold'>(C)</span>\ 2022 \qquad<span class='latex-bold'>(D)</span>\ 2023 \qquad<span class='latex-bold'>(E)</span>\ 2024