Let x0, x1, x2, ⋯ be a sequence of numbers, where each xk is either 0 or 1. For each positive integer n, define
Sn=k=0∑n−1xk2kSuppose 7Sn≡1(mod2n) for all n≥1. What is the value of the sum
x2019+2x2020+4x2021+8x2022?<spanclass=′latex−bold′>(A)</span>6<spanclass=′latex−bold′>(B)</span>7<spanclass=′latex−bold′>(C)</span>12<spanclass=′latex−bold′>(D)</span>14<spanclass=′latex−bold′>(E)</span>15