MathDB

2021 The Chinese Mathematics Competition

Part of The Chinese Mathematics Competition

Subcontests

(11)
3

2021 CMC (Non-math Major) Mark-up Test

Part 1: Fill in the blanks. 1. Let x0=1x_0=1, xn=ln(1+xn1)x_n=ln(1+x_{n-1})(n1n\geq1). Find limn+nxn\lim_{n \to +\infty}nx_n .
2. Find I=0π2cosx1+tanxdxI=\int_{0}^{\frac{\pi}{2}}\frac{cos x}{1+tan x}dx.
3. Let L:{2x4y+z=03xy2z=9L:\begin{cases}2x-4y+z=0\\3x-y-2z=9\end{cases} and plane π:4xy+z=1\pi:4x-y+z=1. Find the equation of projection of straight line LL on the plane π\pi.
4. Find n=1+arctan24n2+4n+1.\sum_{n=1}^{+\infty}arctan\frac{2}{4n^2+4n+1}.
5. Solve (x+1)dydx+1=2ey(x+1)\frac{dy}{dx}+1=2e^{-y} where y(0)=0.y(0)=0.
Part 2: Proof-based Questions 6. Let f(x)=12(1+1e)+11xtet2dtf(x)=-\frac{1}{2}(1+\frac{1}{e})+\int_{-1}^{1}|x-t|e^{-t^2}dt. Prove that f(x)f(x) has only two real roots in the interval (1,1)(-1, 1).
7. Let f(x,y)f(x,y) be a function that exists a continuous second-order partial differentiation in closed region D={(x,y)x2+y21}D=\{(x,y)|x^2+y^2\leq1\} such that 2fx2+2fy2=x2+y2\frac{\partial^2f }{\partial x^2}+\frac{\partial^2f }{\partial y^2}=x^2+y^2. Find limr0+x2+y2r2(xfx+yfy)dxdy(tanrsinr)2\lim_{r \to 0^+} \frac{\int\int_{x^2+y^2\leq r^2}^{}(x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y})dxdy}{(tan r-sin r)^2}.
8. It is given that every orientable smooth closed surface SS in half space in R3R^3 {(x,y,z)R3x>0}\{ (x,y,z)\in R^3 |x>0\} exists Sxf(x)dydz+y(xf(x)f(x))dzdxxz(sinx+f(x))dxdy=0\int\int_{S}^{}xf'(x)dydz+y(xf(x)-f'(x))dzdx-xz(sin x+f'(x))dxdy=0, where ff is twice continuously differentiable on the interval (0,+)(0,+\infty) and limx0+f(x)=limx0+f(x)=0\lim_{x \to 0^+} f(x)=\lim_{x \to 0^+} f'(x)=0. Find f(x)f(x).
9. Let f(x)=0x(1uu)duf(x)=\int_{0}^{x}(1-\frac{\left\lfloor u \right\rfloor}{u})du. Discuss the convergence and divergence of 1+ef(x)xpcos(x21x2)dx\int_{1}^{+\infty}\frac{e^{f(x)}}{x^p}cos(x^2-\frac{1}{x^2})dx, where pp is positive number.
10. Let an{a_n} be a positive sequence that is monotonically decreasing and tends to 00 and f(x)=n=1annxnf(x)=\sum_{n=1}^{\infty}a_n^nx^n. Prove that if the series n=1an\sum_{n=1}^{\infty}a_n diverges, then integral 1+lnf(x)x2dx\int_{1}^{+\infty}\frac{lnf(x)}{x^2}dx diverges too.

2021 CMC (Math Major) Set A

1.1. It is given that at least one of a,b,cRa,b,c\in \mathbb{R} is nonnegative. Find the equation of surface of rotation when the straight line x1a=y1b=z1c\frac{x-1}{a}=\frac{y-1}{b}=\frac{z-1}{c} rotates about the zz-axis.
2.2. Let BRn(n2)B\subset R^n(n\ge 2) be a unit open ball and function u,vu,v is continuous on b\overline{b} and twice continuously differentiable in BB. It satisfies the condition (i) Δu(1u2v2)u=0-\Delta u-(1-u^2-v^2)u=0 (ii) Δv(1u2v2)v=0-\Delta v-(1-u^2-v^2)v=0 (iii) u(x)=v(x)=0u(x)=v(x)=0, where xBx\in \partial B. Also, x=(x1,x2,,xn)x=(x_1,x_2,\cdots,x_n), Δu=2ux12+2ux22++2uxn2\Delta u=\frac{\partial ^2u}{\partial x^2_1}+\frac{\partial ^2u}{\partial x^2_2}+\cdots+\frac{\partial ^2u}{\partial x^2_n}. (B\partial B is the boundary of BB.) Prove that u2(x)+v2(x)1u^2(x)+v^2(x)\leq1(xB\forall x\in \overline{B}).
3.3. Let f(x)=x2021+a2020x2020+a2019x2019++a2x2+a1x+a0f(x)=x^2021+a_{2020}x^{2020}+a_{2019}x^{2019}+\cdots+a_2x^2+a_1x+a_0 be a polynomial with integer coefficients and a00a_0\neq 0. For any 0k20200 \leq k \leq 2020, there exists ak40|a_k|\leq 40. Prove that it is not possible for all roots of f(x)=0f(x)=0 to be a real number.
4.4. Let PP be an unitary and symmetric matrix. Prove that there exists an inverse complex matrix QQ such that P=QQ1P=\overline{Q}Q^{-1}.
5.5. Let α\alpha be an integer greater than 11. Prove that (1) 0+dx0+etαxsinxdt=0+dt0+etαxsinxdx\int_{0}^{+\infty}dx\int_{0}^{+\infty}e^{{-t}^{\alpha}x}sinxdt=\int_{0}^{+\infty}dt\int_{0}^{+\infty}e^{{-t}^{\alpha}x}sinxdx. (2) Evaluate 0+sinx3dx0+sinx32dx\int_{0}^{+\infty}sin x^3dx\cdot \int_{0}^{+\infty}sin x^{\frac{3}{2}}dx.
6.6. It satisfies: xR\forall x\in \mathbb{R}, f(x)6+f(x)f2(x)f'(x)\ge 6+f(x)-f^2(x) and g(x)6+g(x)g2(x)g'(x)\le 6+g(x)-g^2(x). Prove that (1) x(0,1)\forall x\in (0, 1) and xRx\in \mathbb{R}, there exists ξ(,x)\xi\in (-\infty,x) such that f(ξ)3εf(\xi)\ge 3-\varepsilon. (2) xR\forall x\in \mathbb{R}, f(x)3f(x) \ge 3. (3) xR\forall x\in \mathbb{R}, there exists η(,x)\eta\in (-\infty,x) such that g(η)3g(\eta)\le 3. (4) xR\forall x\in \mathbb{R}, g(x)3g(x) \le 3.