MathDB
2021 CMC (Math Major) Set A

Source: 2021 CMC (Math Major) Set A

November 26, 2022
geometrygeometric transformationrotationfunctionalgebrapolynomiallinear algebra

Problem Statement

1.1. It is given that at least one of a,b,cRa,b,c\in \mathbb{R} is nonnegative. Find the equation of surface of rotation when the straight line x1a=y1b=z1c\frac{x-1}{a}=\frac{y-1}{b}=\frac{z-1}{c} rotates about the zz-axis.
2.2. Let BRn(n2)B\subset R^n(n\ge 2) be a unit open ball and function u,vu,v is continuous on b\overline{b} and twice continuously differentiable in BB. It satisfies the condition (i) Δu(1u2v2)u=0-\Delta u-(1-u^2-v^2)u=0 (ii) Δv(1u2v2)v=0-\Delta v-(1-u^2-v^2)v=0 (iii) u(x)=v(x)=0u(x)=v(x)=0, where xBx\in \partial B. Also, x=(x1,x2,,xn)x=(x_1,x_2,\cdots,x_n), Δu=2ux12+2ux22++2uxn2\Delta u=\frac{\partial ^2u}{\partial x^2_1}+\frac{\partial ^2u}{\partial x^2_2}+\cdots+\frac{\partial ^2u}{\partial x^2_n}. (B\partial B is the boundary of BB.) Prove that u2(x)+v2(x)1u^2(x)+v^2(x)\leq1(xB\forall x\in \overline{B}).
3.3. Let f(x)=x2021+a2020x2020+a2019x2019++a2x2+a1x+a0f(x)=x^2021+a_{2020}x^{2020}+a_{2019}x^{2019}+\cdots+a_2x^2+a_1x+a_0 be a polynomial with integer coefficients and a00a_0\neq 0. For any 0k20200 \leq k \leq 2020, there exists ak40|a_k|\leq 40. Prove that it is not possible for all roots of f(x)=0f(x)=0 to be a real number.
4.4. Let PP be an unitary and symmetric matrix. Prove that there exists an inverse complex matrix QQ such that P=QQ1P=\overline{Q}Q^{-1}.
5.5. Let α\alpha be an integer greater than 11. Prove that (1) 0+dx0+etαxsinxdt=0+dt0+etαxsinxdx\int_{0}^{+\infty}dx\int_{0}^{+\infty}e^{{-t}^{\alpha}x}sinxdt=\int_{0}^{+\infty}dt\int_{0}^{+\infty}e^{{-t}^{\alpha}x}sinxdx. (2) Evaluate 0+sinx3dx0+sinx32dx\int_{0}^{+\infty}sin x^3dx\cdot \int_{0}^{+\infty}sin x^{\frac{3}{2}}dx.
6.6. It satisfies: xR\forall x\in \mathbb{R}, f(x)6+f(x)f2(x)f'(x)\ge 6+f(x)-f^2(x) and g(x)6+g(x)g2(x)g'(x)\le 6+g(x)-g^2(x). Prove that (1) x(0,1)\forall x\in (0, 1) and xRx\in \mathbb{R}, there exists ξ(,x)\xi\in (-\infty,x) such that f(ξ)3εf(\xi)\ge 3-\varepsilon. (2) xR\forall x\in \mathbb{R}, f(x)3f(x) \ge 3. (3) xR\forall x\in \mathbb{R}, there exists η(,x)\eta\in (-\infty,x) such that g(η)3g(\eta)\le 3. (4) xR\forall x\in \mathbb{R}, g(x)3g(x) \le 3.