MathDB
2021 CMC (Non-math Major) Mark-up Test

Source: 2021 CMC (Non-math Major) Mark-up Test

November 25, 2022
functioncalculusintegration

Problem Statement

Part 1: Fill in the blanks. 1. Let x0=1x_0=1, xn=ln(1+xn1)x_n=ln(1+x_{n-1})(n1n\geq1). Find limn+nxn\lim_{n \to +\infty}nx_n .
2. Find I=0π2cosx1+tanxdxI=\int_{0}^{\frac{\pi}{2}}\frac{cos x}{1+tan x}dx.
3. Let L:{2x4y+z=03xy2z=9L:\begin{cases}2x-4y+z=0\\3x-y-2z=9\end{cases} and plane π:4xy+z=1\pi:4x-y+z=1. Find the equation of projection of straight line LL on the plane π\pi.
4. Find n=1+arctan24n2+4n+1.\sum_{n=1}^{+\infty}arctan\frac{2}{4n^2+4n+1}.
5. Solve (x+1)dydx+1=2ey(x+1)\frac{dy}{dx}+1=2e^{-y} where y(0)=0.y(0)=0.
Part 2: Proof-based Questions 6. Let f(x)=12(1+1e)+11xtet2dtf(x)=-\frac{1}{2}(1+\frac{1}{e})+\int_{-1}^{1}|x-t|e^{-t^2}dt. Prove that f(x)f(x) has only two real roots in the interval (1,1)(-1, 1).
7. Let f(x,y)f(x,y) be a function that exists a continuous second-order partial differentiation in closed region D={(x,y)x2+y21}D=\{(x,y)|x^2+y^2\leq1\} such that 2fx2+2fy2=x2+y2\frac{\partial^2f }{\partial x^2}+\frac{\partial^2f }{\partial y^2}=x^2+y^2. Find limr0+x2+y2r2(xfx+yfy)dxdy(tanrsinr)2\lim_{r \to 0^+} \frac{\int\int_{x^2+y^2\leq r^2}^{}(x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y})dxdy}{(tan r-sin r)^2}.
8. It is given that every orientable smooth closed surface SS in half space in R3R^3 {(x,y,z)R3x>0}\{ (x,y,z)\in R^3 |x>0\} exists Sxf(x)dydz+y(xf(x)f(x))dzdxxz(sinx+f(x))dxdy=0\int\int_{S}^{}xf'(x)dydz+y(xf(x)-f'(x))dzdx-xz(sin x+f'(x))dxdy=0, where ff is twice continuously differentiable on the interval (0,+)(0,+\infty) and limx0+f(x)=limx0+f(x)=0\lim_{x \to 0^+} f(x)=\lim_{x \to 0^+} f'(x)=0. Find f(x)f(x).
9. Let f(x)=0x(1uu)duf(x)=\int_{0}^{x}(1-\frac{\left\lfloor u \right\rfloor}{u})du. Discuss the convergence and divergence of 1+ef(x)xpcos(x21x2)dx\int_{1}^{+\infty}\frac{e^{f(x)}}{x^p}cos(x^2-\frac{1}{x^2})dx, where pp is positive number.
10. Let an{a_n} be a positive sequence that is monotonically decreasing and tends to 00 and f(x)=n=1annxnf(x)=\sum_{n=1}^{\infty}a_n^nx^n. Prove that if the series n=1an\sum_{n=1}^{\infty}a_n diverges, then integral 1+lnf(x)x2dx\int_{1}^{+\infty}\frac{lnf(x)}{x^2}dx diverges too.