MathDB
Problems
Contests
Undergraduate contests
IberoAmerican Olympiad For University Students
2009 IberoAmerican Olympiad For University Students
2009 IberoAmerican Olympiad For University Students
Part of
IberoAmerican Olympiad For University Students
Subcontests
(7)
7
1
Hide problems
Subgroups subnormal=>Nontrivial center - OIMU 2009 Problem 7
Let
G
G
G
be a group such that every subgroup of
G
G
G
is subnormal. Suppose that there exists
N
N
N
normal subgroup of
G
G
G
such that
Z
(
N
)
Z(N)
Z
(
N
)
is nontrivial and
G
/
N
G/N
G
/
N
is cyclic. Prove that
Z
(
G
)
Z(G)
Z
(
G
)
is nontrivial. (
Z
(
G
)
Z(G)
Z
(
G
)
denotes the center of
G
G
G
).Note: A subgroup
H
H
H
of
G
G
G
is subnormal if there exist subgroups
H
1
,
H
2
,
…
,
H
m
=
G
H_1,H_2,\ldots,H_m=G
H
1
,
H
2
,
…
,
H
m
=
G
of
G
G
G
such that
H
⊲
H
1
⊲
H
2
⊲
…
⊲
H
m
=
G
H\lhd H_1\lhd H_2 \lhd \ldots \lhd H_m= G
H
⊲
H
1
⊲
H
2
⊲
…
⊲
H
m
=
G
(
⊲
\lhd
⊲
denotes normal subgroup).
6
1
Hide problems
Polynomials in Z[x], |product|=1 - OIMU 2009 Problem 6
Let
α
1
,
…
,
α
d
,
β
1
,
…
,
β
e
∈
C
\alpha_1,\ldots,\alpha_d,\beta_1,\ldots,\beta_e\in\mathbb{C}
α
1
,
…
,
α
d
,
β
1
,
…
,
β
e
∈
C
be such that the polynomials
f
1
(
x
)
=
∏
i
=
1
d
(
x
−
α
i
)
f_1(x) =\prod_{i=1}^d(x-\alpha_i)
f
1
(
x
)
=
∏
i
=
1
d
(
x
−
α
i
)
and
f
2
(
x
)
=
∏
i
=
1
e
(
x
−
β
i
)
f_2(x) =\prod_{i=1}^e(x-\beta_i)
f
2
(
x
)
=
∏
i
=
1
e
(
x
−
β
i
)
have integer coefficients.Suppose that there exist polynomials
g
1
,
g
2
∈
Z
[
x
]
g_1, g_2 \in\mathbb{Z}[x]
g
1
,
g
2
∈
Z
[
x
]
such that
f
1
g
1
+
f
2
g
2
=
1
f_1g_1 +f_2g_2 = 1
f
1
g
1
+
f
2
g
2
=
1
.Prove that \left|\prod_{i=1}^d \prod_{j=1}^e (\alpha_i - \beta_j)\right|=1
5
1
Hide problems
Two binary relations - OIMU 2009 Problem 5
Let
N
\mathbb{N}
N
and
N
∗
\mathbb{N}^*
N
∗
be the sets containing the natural numbers/positive integers respectively.We define a binary relation on
N
\mathbb{N}
N
by
a
∈
ˊ
b
a\acute{\in}b
a
∈
ˊ
b
iff the
a
a
a
-th bit in the binary representation of
b
b
b
is
1
1
1
.We define a binary relation on
N
∗
\mathbb{N}^*
N
∗
by
a
∈
~
b
a\tilde{\in}b
a
∈
~
b
iff
b
b
b
is a multiple of the
a
a
a
-th prime number
p
a
p_a
p
a
.i) Prove that there is no bijection
f
:
N
→
N
∗
f:\mathbb{N}\to \mathbb{N}^*
f
:
N
→
N
∗
such that
a
∈
ˊ
b
⇔
f
(
a
)
∈
~
f
(
b
)
a\acute{\in}b\Leftrightarrow f(a)\tilde{\in}f(b)
a
∈
ˊ
b
⇔
f
(
a
)
∈
~
f
(
b
)
. ii) Prove that there is a bijection
g
:
N
→
N
∗
g:\mathbb{N}\to \mathbb{N}^*
g
:
N
→
N
∗
such that
(
a
∈
ˊ
b
∨
b
∈
ˊ
a
)
⇔
(
g
(
a
)
∈
~
g
(
b
)
∨
g
(
b
)
∈
~
g
(
a
)
)
(a\acute{\in}b \vee b\acute{\in}a)\Leftrightarrow (g(a)\tilde{\in}g(b) \vee g(b)\tilde{\in}g(a))
(
a
∈
ˊ
b
∨
b
∈
ˊ
a
)
⇔
(
g
(
a
)
∈
~
g
(
b
)
∨
g
(
b
)
∈
~
g
(
a
))
.
4
1
Hide problems
Slippery functions - OIMU 2009 Problem 4
Given two positive integers
m
,
n
m,n
m
,
n
, we say that a function
f
:
[
0
,
m
]
→
R
f : [0,m] \to \mathbb{R}
f
:
[
0
,
m
]
→
R
is
(
m
,
n
)
(m,n)
(
m
,
n
)
-slippery if it has the following properties:i)
f
f
f
is continuous; ii)
f
(
0
)
=
0
f(0) = 0
f
(
0
)
=
0
,
f
(
m
)
=
n
f(m) = n
f
(
m
)
=
n
; iii) If
t
1
,
t
2
∈
[
0
,
m
]
t_1, t_2\in [0,m]
t
1
,
t
2
∈
[
0
,
m
]
with
t
1
<
t
2
t_1 < t_2
t
1
<
t
2
are such that
t
2
−
t
1
∈
Z
t_2-t_1\in \mathbb{Z}
t
2
−
t
1
∈
Z
and
f
(
t
2
)
−
f
(
t
1
)
∈
Z
f(t_2)-f(t_1)\in\mathbb{Z}
f
(
t
2
)
−
f
(
t
1
)
∈
Z
, then
t
2
−
t
1
∈
{
0
,
m
}
t_2-t_1 \in \{0,m\}
t
2
−
t
1
∈
{
0
,
m
}
.Find all the possible values for
m
,
n
m, n
m
,
n
such that there is a function
f
f
f
that is
(
m
,
n
)
(m,n)
(
m
,
n
)
-slippery.
3
1
Hide problems
Find the maximum of a product - OIMU 2009 Problem 3
Let
a
,
b
,
c
,
d
,
e
∈
R
+
a, b, c, d, e \in \mathbb{R}^+
a
,
b
,
c
,
d
,
e
∈
R
+
and
f
:
{
(
x
,
y
)
∈
(
R
+
)
2
∣
c
−
d
x
−
e
y
>
0
}
→
R
+
f:\{(x, y) \in (\mathbb{R}^+)^2|c-dx-ey > 0\}\to \mathbb{R}^+
f
:
{(
x
,
y
)
∈
(
R
+
)
2
∣
c
−
d
x
−
ey
>
0
}
→
R
+
be given by
f
(
x
,
y
)
=
(
a
x
)
(
b
y
)
(
c
−
d
x
−
e
y
)
f(x, y) = (ax)(by)(c- dx- ey)
f
(
x
,
y
)
=
(
a
x
)
(
b
y
)
(
c
−
d
x
−
ey
)
. Find the maximum value of
f
f
f
.
2
1
Hide problems
Linearly independent vectors - OIMU 2009 Problem 2
Let
x
1
,
⋯
,
x
n
x_1,\cdots, x_n
x
1
,
⋯
,
x
n
be nonzero vectors of a vector space
V
V
V
and
φ
:
V
→
V
\varphi:V\to V
φ
:
V
→
V
be a linear transformation such that
φ
x
1
=
x
1
\varphi x_1 = x_1
φ
x
1
=
x
1
,
φ
x
k
=
x
k
−
x
k
−
1
\varphi x_k = x_k - x_{k-1}
φ
x
k
=
x
k
−
x
k
−
1
for
k
=
2
,
3
,
…
,
n
k = 2, 3,\ldots,n
k
=
2
,
3
,
…
,
n
. Prove that the vectors
x
1
,
…
,
x
n
x_1,\ldots,x_n
x
1
,
…
,
x
n
are linearly independent.
1
1
Hide problems
Triangle cut in similar triangles - OIMU 2009 Problem 1
A line through a vertex of a non-degenerate triangle cuts it in two similar triangles with
3
\sqrt{3}
3
as the ratio between correspondent sides. Find the angles of the given triangle.