Polynomials in Z[x], |product|=1 - OIMU 2009 Problem 6
Source:
May 23, 2010
algebrapolynomialalgorithmalgebra proposed
Problem Statement
Let α1,…,αd,β1,…,βe∈C be such that the polynomialsf1(x)=∏i=1d(x−αi) and f2(x)=∏i=1e(x−βi)have integer coefficients.Suppose that there exist polynomials g1,g2∈Z[x] such that f1g1+f2g2=1.Prove that \left|\prod_{i=1}^d \prod_{j=1}^e (\alpha_i - \beta_j)\right|=1