MathDB
Polynomials in Z[x], |product|=1 - OIMU 2009 Problem 6

Source:

May 23, 2010
algebrapolynomialalgorithmalgebra proposed

Problem Statement

Let α1,,αd,β1,,βeC\alpha_1,\ldots,\alpha_d,\beta_1,\ldots,\beta_e\in\mathbb{C} be such that the polynomials
f1(x)=i=1d(xαi)f_1(x) =\prod_{i=1}^d(x-\alpha_i) and f2(x)=i=1e(xβi)f_2(x) =\prod_{i=1}^e(x-\beta_i)
have integer coefficients.
Suppose that there exist polynomials g1,g2Z[x]g_1, g_2 \in\mathbb{Z}[x] such that f1g1+f2g2=1f_1g_1 +f_2g_2 = 1.
Prove that \left|\prod_{i=1}^d \prod_{j=1}^e (\alpha_i - \beta_j) \right|=1