MathDB
Two binary relations - OIMU 2009 Problem 5

Source:

May 23, 2010
functionnumber theory unsolvednumber theory

Problem Statement

Let N\mathbb{N} and N\mathbb{N}^* be the sets containing the natural numbers/positive integers respectively.
We define a binary relation on N\mathbb{N} by aˊba\acute{\in}b iff the aa-th bit in the binary representation of bb is 11.
We define a binary relation on N\mathbb{N}^* by a~ba\tilde{\in}b iff bb is a multiple of the aa-th prime number pap_a.
i) Prove that there is no bijection f:NNf:\mathbb{N}\to \mathbb{N}^* such that aˊbf(a)~f(b)a\acute{\in}b\Leftrightarrow f(a)\tilde{\in}f(b). ii) Prove that there is a bijection g:NNg:\mathbb{N}\to \mathbb{N}^* such that (aˊbbˊa)(g(a)~g(b)g(b)~g(a))(a\acute{\in}b \vee b\acute{\in}a)\Leftrightarrow (g(a)\tilde{\in}g(b) \vee g(b)\tilde{\in}g(a)).