Subcontests
(25)Area of a Closed Curve
The closed curve in the figure is made up of 9 congruent circular arcs each of length 32π, where each of the centers of the corresponding circles is among the vertices of a regular hexagon of side 2. What is the area enclosed by the curve? [asy]
size(170);
defaultpen(fontsize(6pt));
dotfactor=4;
label("∘",(0,1));
label("∘",(0.865,0.5));
label("∘",(-0.865,0.5));
label("∘",(0.865,-0.5));
label("∘",(-0.865,-0.5));
label("∘",(0,-1));
dot((0,1.5));
dot((-0.4325,0.75));
dot((0.4325,0.75));
dot((-0.4325,-0.75));
dot((0.4325,-0.75));
dot((-0.865,0));
dot((0.865,0));
dot((-1.2975,-0.75));
dot((1.2975,-0.75));
draw(Arc((0,1),0.5,210,-30));
draw(Arc((0.865,0.5),0.5,150,270));
draw(Arc((0.865,-0.5),0.5,90,-150));
draw(Arc((0.865,-0.5),0.5,90,-150));
draw(Arc((0,-1),0.5,30,150));
draw(Arc((-0.865,-0.5),0.5,330,90));
draw(Arc((-0.865,0.5),0.5,-90,30));
[/asy]<spanclass=′latex−bold′>(A)</span> 2π+6<spanclass=′latex−bold′>(B)</span> 2π+43<spanclass=′latex−bold′>(C)</span> 3π+4<spanclass=′latex−bold′>(D)</span> 2π+33+2<spanclass=′latex−bold′>(E)</span> π+63 Three Unit Squares
Three unit squares and two line segments connecting two pairs of vertices are shown. What is the area of △ABC?[asy]
size(200);
defaultpen(linewidth(.6pt)+fontsize(12pt));
dotfactor=4;
draw((0,0)--(0,2));
draw((0,0)--(1,0));
draw((1,0)--(1,2));
draw((0,1)--(2,1));
draw((0,0)--(1,2));
draw((0,2)--(2,1));
draw((0,2)--(2,2));
draw((2,1)--(2,2));
label("A",(0,2),NW);
label("B",(1,2),N);
label("C",(4/5,1.55),W);
dot((0,2));
dot((1,2));
dot((4/5,1.6));
dot((2,1));
dot((0,0));
[/asy]<spanclass=′latex−bold′>(A)</span> 61<spanclass=′latex−bold′>(B)</span> 51<spanclass=′latex−bold′>(C)</span> 92<spanclass=′latex−bold′>(D)</span> 31<spanclass=′latex−bold′>(E)</span> 42 Three Real Numbers Chosen From [0,n]
Real numbers x,y, and z are chosen independently and at random from the interval [0,n] for some positive integer n. The probability that no two of x,y, and z are within 1 unit of each other is greater than 21. What is the smallest possible value of n?<spanclass=′latex−bold′>(A)</span> 7<spanclass=′latex−bold′>(B)</span> 8<spanclass=′latex−bold′>(C)</span> 9<spanclass=′latex−bold′>(D)</span> 10<spanclass=′latex−bold′>(E)</span> 11 A bug on a hexagonal lattice
A bug travels from A to B along the segments in the hexagonal lattice pictured below. The segments marked with an arrow can be traveled only in the direction of the arrow, and the bug never travels the same segment more than once. How many different paths are there?[asy]
size(10cm);
draw((0.0,0.0)--(1.0,1.7320508075688772)--(3.0,1.7320508075688772)--(4.0,3.4641016151377544)--(6.0,3.4641016151377544)--(7.0,5.196152422706632)--(9.0,5.196152422706632)--(10.0,6.928203230275509)--(12.0,6.928203230275509));
draw((0.0,0.0)--(1.0,1.7320508075688772)--(3.0,1.7320508075688772)--(4.0,3.4641016151377544)--(6.0,3.4641016151377544)--(7.0,5.196152422706632)--(9.0,5.196152422706632)--(10.0,6.928203230275509)--(12.0,6.928203230275509));
draw((3.0,-1.7320508075688772)--(4.0,0.0)--(6.0,0.0)--(7.0,1.7320508075688772)--(9.0,1.7320508075688772)--(10.0,3.4641016151377544)--(12.0,3.464101615137755)--(13.0,5.196152422706632)--(15.0,5.196152422706632));
draw((6.0,-3.4641016151377544)--(7.0,-1.7320508075688772)--(9.0,-1.7320508075688772)--(10.0,0.0)--(12.0,0.0)--(13.0,1.7320508075688772)--(15.0,1.7320508075688776)--(16.0,3.464101615137755)--(18.0,3.4641016151377544));
draw((9.0,-5.196152422706632)--(10.0,-3.464101615137755)--(12.0,-3.464101615137755)--(13.0,-1.7320508075688776)--(15.0,-1.7320508075688776)--(16.0,0)--(18.0,0.0)--(19.0,1.7320508075688772)--(21.0,1.7320508075688767));
draw((12.0,-6.928203230275509)--(13.0,-5.196152422706632)--(15.0,-5.196152422706632)--(16.0,-3.464101615137755)--(18.0,-3.4641016151377544)--(19.0,-1.7320508075688772)--(21.0,-1.7320508075688767)--(22.0,0));
draw((0.0,-0.0)--(1.0,-1.7320508075688772)--(3.0,-1.7320508075688772)--(4.0,-3.4641016151377544)--(6.0,-3.4641016151377544)--(7.0,-5.196152422706632)--(9.0,-5.196152422706632)--(10.0,-6.928203230275509)--(12.0,-6.928203230275509));
draw((3.0,1.7320508075688772)--(4.0,-0.0)--(6.0,-0.0)--(7.0,-1.7320508075688772)--(9.0,-1.7320508075688772)--(10.0,-3.4641016151377544)--(12.0,-3.464101615137755)--(13.0,-5.196152422706632)--(15.0,-5.196152422706632));
draw((6.0,3.4641016151377544)--(7.0,1.7320508075688772)--(9.0,1.7320508075688772)--(10.0,-0.0)--(12.0,-0.0)--(13.0,-1.7320508075688772)--(15.0,-1.7320508075688776)--(16.0,-3.464101615137755)--(18.0,-3.4641016151377544));
draw((9.0,5.1961524)--(10.0,3.464101)--(12.0,3.46410)--(13.0,1.73205)--(15.0,1.732050)--(16.0,0)--(18.0,-0.0)--(19.0,-1.7320)--(21.0,-1.73205080));
draw((12.0,6.928203)--(13.0,5.1961524)--(15.0,5.1961524)--(16.0,3.464101615)--(18.0,3.4641016)--(19.0,1.7320508)--(21.0,1.732050)--(22.0,0));
dot((0,0));
dot((22,0));
label("A",(0,0),WNW);
label("B",(22,0),E);
filldraw((2.0,1.7320508075688772)--(1.6,1.2320508075688772)--(1.75,1.7320508075688772)--(1.6,2.232050807568877)--cycle,black);
filldraw((5.0,3.4641016151377544)--(4.6,2.9641016151377544)--(4.75,3.4641016151377544)--(4.6,3.9641016151377544)--cycle,black);
filldraw((8.0,5.196152422706632)--(7.6,4.696152422706632)--(7.75,5.196152422706632)--(7.6,5.696152422706632)--cycle,black);
filldraw((11.0,6.928203230275509)--(10.6,6.428203230275509)--(10.75,6.928203230275509)--(10.6,7.428203230275509)--cycle,black);
filldraw((4.6,0.0)--(5.0,-0.5)--(4.85,0.0)--(5.0,0.5)--cycle,white);
filldraw((8.0,1.732050)--(7.6,1.2320)--(7.75,1.73205)--(7.6,2.2320)--cycle,black);
filldraw((11.0,3.4641016)--(10.6,2.9641016)--(10.75,3.46410161)--(10.6,3.964101)--cycle,black);
filldraw((14.0,5.196152422706632)--(13.6,4.696152422706632)--(13.75,5.196152422706632)--(13.6,5.696152422706632)--cycle,black);
filldraw((8.0,-1.732050)--(7.6,-2.232050)--(7.75,-1.7320508)--(7.6,-1.2320)--cycle,black);
filldraw((10.6,0.0)--(11,-0.5)--(10.85,0.0)--(11,0.5)--cycle,white);
filldraw((14.0,1.7320508075688772)--(13.6,1.2320508075688772)--(13.75,1.7320508075688772)--(13.6,2.232050807568877)--cycle,black);
filldraw((17.0,3.464101615137755)--(16.6,2.964101615137755)--(16.75,3.464101615137755)--(16.6,3.964101615137755)--cycle,black);
filldraw((11.0,-3.464101615137755)--(10.6,-3.964101615137755)--(10.75,-3.464101615137755)--(10.6,-2.964101615137755)--cycle,black);
filldraw((14.0,-1.7320508075688776)--(13.6,-2.2320508075688776)--(13.75,-1.7320508075688776)--(13.6,-1.2320508075688776)--cycle,black);
filldraw((16.6,0)--(17,-0.5)--(16.85,0)--(17,0.5)--cycle,white);
filldraw((20.0,1.7320508075688772)--(19.6,1.2320508075688772)--(19.75,1.7320508075688772)--(19.6,2.232050807568877)--cycle,black);
filldraw((14.0,-5.196152422706632)--(13.6,-5.696152422706632)--(13.75,-5.196152422706632)--(13.6,-4.696152422706632)--cycle,black);
filldraw((17.0,-3.464101615137755)--(16.6,-3.964101615137755)--(16.75,-3.464101615137755)--(16.6,-2.964101615137755)--cycle,black);
filldraw((20.0,-1.7320508075688772)--(19.6,-2.232050807568877)--(19.75,-1.7320508075688772)--(19.6,-1.2320508075688772)--cycle,black);
filldraw((2.0,-1.7320508075688772)--(1.6,-1.2320508075688772)--(1.75,-1.7320508075688772)--(1.6,-2.232050807568877)--cycle,black);
filldraw((5.0,-3.4641016)--(4.6,-2.964101)--(4.75,-3.4641)--(4.6,-3.9641016)--cycle,black);
filldraw((8.0,-5.1961524)--(7.6,-4.6961524)--(7.75,-5.19615242)--(7.6,-5.696152422)--cycle,black);
filldraw((11.0,-6.9282032)--(10.6,-6.4282032)--(10.75,-6.928203)--(10.6,-7.428203)--cycle,black);[/asy]<spanclass=′latex−bold′>(A)</span> 2112<spanclass=′latex−bold′>(B)</span> 2304<spanclass=′latex−bold′>(C)</span> 2368<spanclass=′latex−bold′>(D)</span> 2384<spanclass=′latex−bold′>(E)</span> 2400 Ways to List Integers
Let (a1,a2,…,a10) be a list of the first 10 positive integers such that for each 2≤i≤10 either ai+1 or ai−1 or both appear somewhere before ai in the list. How many such lists are there?<spanclass=′latex−bold′>(A)</span> 120<spanclass=′latex−bold′>(B)</span> 512<spanclass=′latex−bold′>(C)</span> 1024<spanclass=′latex−bold′>(D)</span> 181,440<spanclass=′latex−bold′>(E)</span> 362,880 3D Geometry Area
Let points A=(0,0,0), B=(1,0,0), C=(0,2,0), and D=(0,0,3). Points E,F,G, and H are midpoints of line segments BD,AB,AC, and DC respectively. What is the area of EFGH?<spanclass=′latex−bold′>(A)</span> 2<spanclass=′latex−bold′>(B)</span> 325<spanclass=′latex−bold′>(C)</span> 435<spanclass=′latex−bold′>(D)</span> 3<spanclass=′latex−bold′>(E)</span> 327 Four Points in a Plane
Four distinct points are arranged in a plane so that the segments connecting them has lengths a,a,a,a,2a, and b. What is the ratio of b to a?<spanclass=′latex−bold′>(A)</span> 3<spanclass=′latex−bold′>(B)</span> 2<spanclass=′latex−bold′>(C)</span> 5<spanclass=′latex−bold′>(D)</span> 3<spanclass=′latex−bold′>(E)</span> π Three Runners Stopping
Three runners start running simultaneously from the same point on a 500-meter circular track. They each run clockwise around the course maintaining constant speeds of 4.4, 4.8, and 5.0 meters per second. The runners stop once they are all together again somewhere on the circular course. How many seconds do the runners run?<spanclass=′latex−bold′>(A)</span> 1,000<spanclass=′latex−bold′>(B)</span> 1,250<spanclass=′latex−bold′>(C)</span> 2,500<spanclass=′latex−bold′>(D)</span> 5,000<spanclass=′latex−bold′>(E)</span> 10,000 Region Bounded by Circles Area
Three circles with radius 2 are mutually tangent. What is the total area of the circles and the region bounded by them, as shown in the figure? [asy]
filldraw((0,0)--(2,0)--(1,sqrt(3))--cycle,gray,gray);
filldraw(circle((1,sqrt(3)),1),gray);
filldraw(circle((0,0),1),gray);
filldraw(circle((2,0),1),grey);
[/asy]<spanclass=′latex−bold′>(A)</span> 10π+43<spanclass=′latex−bold′>(B)</span> 13π−3<spanclass=′latex−bold′>(C)</span> 12π+3<spanclass=′latex−bold′>(D)</span> 10π+9<spanclass=′latex−bold′>(E)</span> 13π Reflecting Point over Line
The point in the xy-plane with coordinates (1000,2012) is reflected across line y=2000. What are the coordinates of the reflected point? <spanclass=′latex−bold′>(A)</span> (998,2012)<spanclass=′latex−bold′>(B)</span> (1000,1988)<spanclass=′latex−bold′>(C)</span> (1000,2024)<spanclass=′latex−bold′>(D)</span> (1000,4012)<spanclass=′latex−bold′>(E)</span> (1012,2012)