MathDB

16

Part of 2012 AMC 10

Problems(2)

Three Runners Stopping

Source: 2012 AMC10A Problem #16

2/8/2012
Three runners start running simultaneously from the same point on a 500500-meter circular track. They each run clockwise around the course maintaining constant speeds of 4.44.4, 4.84.8, and 5.05.0 meters per second. The runners stop once they are all together again somewhere on the circular course. How many seconds do the runners run?
<spanclass=latexbold>(A)</span> 1,000<spanclass=latexbold>(B)</span> 1,250<spanclass=latexbold>(C)</span> 2,500<spanclass=latexbold>(D)</span> 5,000<spanclass=latexbold>(E)</span> 10,000 <span class='latex-bold'>(A)</span>\ 1,000 \qquad<span class='latex-bold'>(B)</span>\ 1,250 \qquad<span class='latex-bold'>(C)</span>\ 2,500 \qquad<span class='latex-bold'>(D)</span>\ 5,000 \qquad<span class='latex-bold'>(E)</span>\ 10,000
modular arithmeticAMC
Region Bounded by Circles Area

Source: 2012 AMC10B Problem #16

2/23/2012
Three circles with radius 22 are mutually tangent. What is the total area of the circles and the region bounded by them, as shown in the figure?
[asy] filldraw((0,0)--(2,0)--(1,sqrt(3))--cycle,gray,gray); filldraw(circle((1,sqrt(3)),1),gray); filldraw(circle((0,0),1),gray); filldraw(circle((2,0),1),grey); [/asy]
<spanclass=latexbold>(A)</span> 10π+43<spanclass=latexbold>(B)</span> 13π3<spanclass=latexbold>(C)</span> 12π+3<spanclass=latexbold>(D)</span> 10π+9<spanclass=latexbold>(E)</span> 13π <span class='latex-bold'>(A)</span>\ 10\pi+4\sqrt3\qquad<span class='latex-bold'>(B)</span>\ 13\pi-\sqrt3\qquad<span class='latex-bold'>(C)</span>\ 12\pi+\sqrt3\qquad<span class='latex-bold'>(D)</span>\ 10\pi+9\qquad<span class='latex-bold'>(E)</span>\ 13\pi
geometryAMC