MathDB
Equilateral Triangles in Square

Source: 2012 AMC10B Problem #14

February 23, 2012
geometryrhombustrigonometrytrig identitiesLaw of SinesAMC

Problem Statement

Two equilateral triangles are contained in a square whose side length is 232\sqrt3. The bases of these triangles are the opposite sides of the square, and their intersection is a rhombus. What is the area of the rhombus?
<spanclass=latexbold>(A)</span> 32<spanclass=latexbold>(B)</span> 3<spanclass=latexbold>(C)</span> 221<spanclass=latexbold>(D)</span> 8312<spanclass=latexbold>(E)</span> 433 <span class='latex-bold'>(A)</span>\ \frac{3}{2}\qquad<span class='latex-bold'>(B)</span>\ \sqrt3\qquad<span class='latex-bold'>(C)</span>\ 2\sqrt2-1\qquad<span class='latex-bold'>(D)</span>\ 8\sqrt3-12\qquad<span class='latex-bold'>(E)</span>\ \frac{4\sqrt3}{3}