MathDB
Bernado and Silvia

Source: 2012 AMC 12B #14

February 23, 2012
AMCAMC 12AMC 12 BinequalitiesAMC 10number theorymodular arithmetic

Problem Statement

Bernado and Silvia play the following game. An integer between 0 and 999, inclusive, is selected and given to Bernado. Whenever Bernado receives a number, he doubles it and passes the result to Silvia. Whenever Silvia receives a number, she adds 50 to it and passes the result to Bernado. The winner is the last person who produces a number less than 1000. Let NN be the smallest initial number that results in a win for Bernado. What is the sum of the digits of NN?
<spanclass=latexbold>(A)</span> 7<spanclass=latexbold>(B)</span> 8<spanclass=latexbold>(C)</span> 9<spanclass=latexbold>(D)</span> 10<spanclass=latexbold>(E)</span> 11<span class='latex-bold'>(A)</span>\ 7 \qquad<span class='latex-bold'>(B)</span>\ 8 \qquad<span class='latex-bold'>(C)</span>\ 9 \qquad<span class='latex-bold'>(D)</span>\ 10 \qquad<span class='latex-bold'>(E)</span>\ 11