Subcontests
(12)find conditional distribution
Let X1,X2,X3 be exp(1). Find the conditional distribution of X1∣X1+X2+X3=k.
<spanclass=′latex−bold′>(A)</span> Uniform(0,k)
<spanclass=′latex−bold′>(B)</span> Uniform(0,3k)
<spanclass=′latex−bold′>(C)</span> Uniform(0,32k)
<spanclass=′latex−bold′>(D)</span> None of the above connectedness
Which of the following are true?
<spanclass=′latex−bold′>(A)</span> GL(n,R) is connected
<spanclass=′latex−bold′>(B)</span> GL(n,C) is connected
<spanclass=′latex−bold′>(C)</span> O(n,R) is connected
<spanclass=′latex−bold′>(D)</span> O(n,C) is connected conditional distribution
Let X,Y be i.i.d Geom(p). What is the conditional distribution of X∣X+Y=k?
<spanclass=′latex−bold′>(A)</span> Uniform{1,2,…,⌊2k⌋}
<spanclass=′latex−bold′>(B)</span> Uniform{1,2,…,k}
<spanclass=′latex−bold′>(C)</span> Uniform{1,2,…,⌊2k⌋+1}
<spanclass=′latex−bold′>(D)</span> None of the above multi-choice matrix statements
Which of the following are true?
<spanclass=′latex−bold′>(A)</span> ∀A∈Mn(R),At=X−1AX for some X∈Mn(R)
<spanclass=′latex−bold′>(B)</span> ∀A∈Mn(R),I+AAt is invertible
<spanclass=′latex−bold′>(C)</span> tr(AB)=tr(BA),∀A,B∈Mn(R) but ∃A,B,C such that tr(ABC)=tr(BAC)
<spanclass=′latex−bold′>(D)</span> None of the above