MathDB

Problem 3

Part of 2019 LIMIT Category C

Problems(2)

statements about subgroup

Source: LIMIT 2019 CCS1 P3

4/28/2021
GG be a group and HGH\le G. Then which of the following are true? <spanclass=latexbold>(A)</span> aG,aHa1HaHa1=H<span class='latex-bold'>(A)</span>~a\in G,aHa^{-1}\subset H\Rightarrow aHa^{-1}=H <spanclass=latexbold>(B)</span> G,H and HG with HG<span class='latex-bold'>(B)</span>~\exists G,H\text{ and }H\le G\text{ with }H\cong G <spanclass=latexbold>(C)</span> All subgroups are normal, then G is abelian.<span class='latex-bold'>(C)</span>~\text{All subgroups are normal, then }G\text{ is abelian.} <spanclass=latexbold>(D)</span> None of the above<span class='latex-bold'>(D)</span>~\text{None of the above}
group theoryabstract algebra
convergence of series

Source: LIMIT 2019 CCS2 P3

4/28/2021
Which of the following series are convergent? <spanclass=latexbold>(A)</span> n=12n2+35n3+1<span class='latex-bold'>(A)</span>~\sum_{n=1}^\infty\sqrt{\frac{2n^2+3}{5n^3+1}} <spanclass=latexbold>(B)</span> n=1(n+1)nnn+3/2<span class='latex-bold'>(B)</span>~\sum_{n=1}^\infty\frac{(n+1)^n}{n^{n+3/2}} <spanclass=latexbold>(C)</span> n=1n2x(1x2)n<span class='latex-bold'>(C)</span>~\sum_{n=1}^\infty n^2x\left(1-x^2\right)^n <spanclass=latexbold>(D)</span> None of the above<span class='latex-bold'>(D)</span>~\text{None of the above}
seriesalgebraSummation