MathDB
Problems
Contests
National and Regional Contests
India Contests
India LIMIT
2019 LIMIT
2019 LIMIT Category C
Problem 4
Problem 4
Part of
2019 LIMIT Category C
Problems
(2)
existence of matrices
Source: LIMIT 2019 CCS1 P4
4/28/2021
Which of the following are true?
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
∃
A
∈
M
3
(
R
)
such that
A
2
=
−
I
3
<span class='latex-bold'>(A)</span>~\exists A\in M_3(\mathbb R)\text{ such that }A^2=-I_3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
∃
A
∈
M
3
(
R
)
such that
A
2
=
−
I
3
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
∃
A
,
B
∈
M
3
(
R
)
such that
A
B
−
B
A
=
I
3
<span class='latex-bold'>(B)</span>~\exists A,B\in M_3(\mathbb R)\text{ such that }AB-BA=I_3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
∃
A
,
B
∈
M
3
(
R
)
such that
A
B
−
B
A
=
I
3
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
∀
A
∈
M
4
,
det
(
I
4
+
A
2
)
≥
0
<span class='latex-bold'>(C)</span>~\forall A\in M_4,\det\left(I_4+A^2\right)\ge0
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
∀
A
∈
M
4
,
det
(
I
4
+
A
2
)
≥
0
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
None of the above
<span class='latex-bold'>(D)</span>~\text{None of the above}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
None of the above
linear algebra
matrix
conditional distribution
Source: LIMIT 2019 CCS2 P4
4/28/2021
Let
X
,
Y
X,Y
X
,
Y
be i.i.d
Geom
(
p
)
\operatorname{Geom}(p)
Geom
(
p
)
. What is the conditional distribution of
X
∣
X
+
Y
=
k
X|X+Y=k
X
∣
X
+
Y
=
k
?
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
Uniform
{
1
,
2
,
…
,
⌊
k
2
⌋
}
<span class='latex-bold'>(A)</span>~\operatorname{Uniform}\left\{1,2,\ldots,\left\lfloor\frac k2\right\rfloor\right\}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
Uniform
{
1
,
2
,
…
,
⌊
2
k
⌋
}
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
Uniform
{
1
,
2
,
…
,
k
}
<span class='latex-bold'>(B)</span>~\operatorname{Uniform}\left\{1,2,\ldots,k\right\}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
Uniform
{
1
,
2
,
…
,
k
}
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
Uniform
{
1
,
2
,
…
,
⌊
k
2
⌋
+
1
}
<span class='latex-bold'>(C)</span>~\operatorname{Uniform}\left\{1,2,\ldots,\left\lfloor\frac k2\right\rfloor+1\right\}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
Uniform
{
1
,
2
,
…
,
⌊
2
k
⌋
+
1
}
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
None of the above
<span class='latex-bold'>(D)</span>~\text{None of the above}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
None of the above
probability