MathDB

Problem 1

Part of 2019 LIMIT Category C

Problems(2)

multi-choice matrix statements

Source: LIMIT 2019 CCS1 P1

4/28/2021
Which of the following are true? <spanclass=latexbold>(A)</span> AMn(R),At=X1AX for some XMn(R)<span class='latex-bold'>(A)</span>~\forall A\in M_n(\mathbb R),A^t=X^{-1}AX\text{ for some }X\in M_n(\mathbb R) <spanclass=latexbold>(B)</span> AMn(R),I+AAt is invertible<span class='latex-bold'>(B)</span>~\forall A\in M_n(\mathbb R),I+AA^t\text{ is invertible} <spanclass=latexbold>(C)</span> tr(AB)=tr(BA),A,BMn(R) but A,B,C such that tr(ABC)tr(BAC)<span class='latex-bold'>(C)</span>~\operatorname{tr}(AB)=\operatorname{tr}(BA),\forall A,B\in M_n(\mathbb R)\text{ but }\exists A,B,C\text{ such that }\operatorname{tr}(ABC)\ne\operatorname{tr}(BAC) <spanclass=latexbold>(D)</span> None of the above<span class='latex-bold'>(D)</span>~\text{None of the above}
linear algebramatrix
differentiability of functions at 0

Source: LIMIT 2019 CCS2 P1

4/28/2021
Which of the following functions are differentiable at x=0x=0? <spanclass=latexbold>(A)</span> f(x)={tan1(1x)if x0π2if x=0<span class='latex-bold'>(A)</span>~f(x)=\begin{cases}\tan^{-1}\left(\frac1{|x|}\right)&\text{if }x\ne0\\\frac\pi2&\text{if }x=0\end{cases} <spanclass=latexbold>(B)</span> f(x)=x1/2x<span class='latex-bold'>(B)</span>~f(x)=|x|^{1/2}x <spanclass=latexbold>(C)</span> f(x)={x2cosπxif x00if x=0<span class='latex-bold'>(C)</span>~f(x)=\begin{cases}x^2\left|\cos\frac{\pi}x\right|&\text{if }x\ne0\\0&\text{if }x=0\end{cases} <spanclass=latexbold>(D)</span> None of the above<span class='latex-bold'>(D)</span>~\text{None of the above}
function