Does there exist a functional equation1 that has a solution and the range of any of its solutions is the set of integers?1A functional equation has the form \mbox{\footnotesize $$E = 0$$}, where \mbox{\footnotesize $$E$$} is a function form. The set of function forms is the smallest set \mbox{\footnotesize $$\mathcal{F}$$} which contains the variables \mbox{\footnotesize $$x_1, x_2, \dots$$}, the real numbers \mbox{\footnotesize $$r \in \mathbb{R}$$}, and for which \mbox{\footnotesize $$E, E_1, E_2 \in \mathcal{F}$$} implies \mbox{\footnotesize $$E_1+E_2 \in \mathcal{F}$$}, \mbox{\footnotesize $$E_1 \cdot E_2 \in \mathcal{F}$$}, and \mbox{\footnotesize $$f(E) \in \mathcal{F}$$}, where \mbox{\footnotesize $$f$$} is a fixed function symbol. The solution of the functional equation \mbox{\footnotesize $$E = 0$$} is a function \mbox{\footnotesize $$f: \mathbb{R} \to \mathbb{R}$$} such that \mbox{\footnotesize $$E = 0$$} holds for all values of the variables. E.g. \mbox{\footnotesize $$f\big(x_1 + f(\sqrt{2} \cdot x_2 \cdot x_2)\big) + (-\pi) + (-1) \cdot x_1 \cdot x_1 \cdot x_2 = 0$$} is a functional equation.