MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2019 Miklós Schweitzer
10
10
Part of
2019 Miklós Schweitzer
Problems
(1)
Criterion equivalent to A^n \le B^n for all n
Source: Miklós Schweitzer 2019, Problem 10
12/27/2019
Let
A
A
A
and
B
B
B
be positive self-adjoint operators on a complex Hilbert space
H
H
H
. Prove that
lim sup
n
→
∞
∥
A
n
x
∥
1
/
n
≤
lim sup
n
→
∞
∥
B
n
x
∥
1
/
n
\limsup_{n \to \infty} \|A^n x\|^{1/n} \le \limsup_{n \to \infty} \|B^n x\|^{1/n}
n
→
∞
lim
sup
∥
A
n
x
∥
1/
n
≤
n
→
∞
lim
sup
∥
B
n
x
∥
1/
n
holds for every
x
∈
H
x \in H
x
∈
H
if and only if
A
n
≤
B
n
A^n \le B^n
A
n
≤
B
n
for each positive integer
n
n
n
.
linear algebra