MathDB
Nonlinear recurrence approaches a-1

Source: Miklós Schweitzer 2019, Problem 6

December 27, 2019
recurrence relation

Problem Statement

Let dd be a positive integer and 1<a(d+2)/(d+1)1 < a \le (d+2)/(d+1). For given x0,x1,,xd(0,a1)x_0, x_1,\dots, x_d \in (0, a-1), let xk+1=xk(axkd)x_{k+1} = x_k (a - x_{k-d}), kdk \ge d. Prove that limkxk=a1\lim_{k \to \infty} x_k = a-1.