MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2019 Miklós Schweitzer
6
6
Part of
2019 Miklós Schweitzer
Problems
(1)
Nonlinear recurrence approaches a-1
Source: Miklós Schweitzer 2019, Problem 6
12/27/2019
Let
d
d
d
be a positive integer and
1
<
a
≤
(
d
+
2
)
/
(
d
+
1
)
1 < a \le (d+2)/(d+1)
1
<
a
≤
(
d
+
2
)
/
(
d
+
1
)
. For given
x
0
,
x
1
,
…
,
x
d
∈
(
0
,
a
−
1
)
x_0, x_1,\dots, x_d \in (0, a-1)
x
0
,
x
1
,
…
,
x
d
∈
(
0
,
a
−
1
)
, let
x
k
+
1
=
x
k
(
a
−
x
k
−
d
)
x_{k+1} = x_k (a - x_{k-d})
x
k
+
1
=
x
k
(
a
−
x
k
−
d
)
,
k
≥
d
k \ge d
k
≥
d
. Prove that
lim
k
→
∞
x
k
=
a
−
1
\lim_{k \to \infty} x_k = a-1
lim
k
→
∞
x
k
=
a
−
1
.
recurrence relation