MathDB

1971 Miklós Schweitzer

Part of Miklós Schweitzer

Subcontests

(11)
4
1

Miklos Schweitzer 1971_4

Suppose that V V is a locally compact topological space that admits no countable covering with compact sets. Let <spanclass=latexbold>C</span> <span class='latex-bold'>C</span> denote the set of all compact subsets of the space V V and <spanclass=latexbold>U</span> <span class='latex-bold'>U</span> the set of open subsets that are not contained in any compact set. Let f f be a function from <spanclass=latexbold>U</span> <span class='latex-bold'>U</span> to <spanclass=latexbold>C</span> <span class='latex-bold'>C</span> such that f(U)U f(U)\subseteq U for all U<spanclass=latexbold>U</span> U \in <span class='latex-bold'>U</span>. Prove that either (i) there exists a nonempty compact set C C such that f(U) f(U) is not a proper subset of C C whenever CU<spanclass=latexbold>U</span> C \subseteq U \in <span class='latex-bold'>U</span>, (ii) or for some compact set C C, the set f1(C)={U<spanclass=latexbold>U</span>  :   f(U)C } f^{-1}(C)= \bigcup \{U \in <span class='latex-bold'>U</span>\;: \ \;f(U)\subseteq C\ \} is an element of <spanclass=latexbold>U</span> <span class='latex-bold'>U</span>, that is, f1(C) f^{-1}(C) is not contained in any compact set. A. Mate