Given a positive, monotone function F(x) on (0,∞) such that F(x)/x is monotone nondecreasing and F(x)/x1+d is monotone nonincreasing for some positive d, let λn>0 and an≥0,n≥1. Prove that if n=1∑∞λnF(ank=1∑nλnλk)<∞, or n=1∑∞λnF(k=1∑nakλnλk)<∞, then ∑n=1∞an is convergent.
L. Leindler