MathDB
Miklos Schweitzer 1971_3

Source:

October 29, 2008
real analysis

Problem Statement

Let 0<ak<1 0<a_k<1 for k=1,2,.... k=1,2,... . Give a necessary and sufficient condition for the existence, for every 0<x<1 0<x<1, of a permutation πx \pi_x of the positive integers such that x=k=1aπx(k)2k. x= \sum_{k=1}^{\infty} \frac{a_{\pi_x}(k)}{2^k}. P. Erdos